Liu Huan, Wang Jiangcai, Liu Yuanshuang, Wang Yong, Xu Lujie, Huang Li, Liu Dameng, Luo Jianbin
State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China.
Research Center for Quantum Optics and Quantum Communication, School of Science, Qingdao University of Technology, Qingdao, 266525, China.
Adv Mater. 2022 Aug;34(33):e2106955. doi: 10.1002/adma.202106955. Epub 2022 Jul 14.
Engineering ultrafast interlayer coupling provides access to new quantum phenomena and novel device functionalities in atomically thin van der Waals heterostructures. However, due to all the atoms of a monolayer material being exposed at the interfaces, the interlayer coupling is extremely susceptible to defects, resulting in high energy dissipation through heat and low device performance. The study of how defects affect the interlayer coupling at ultrafast and atomic scales remains a challenge. Here, using femtosecond transient absorption microscopy, a new defect-induced ultrafast interlayer electron-phonon coupling pathway is identified in a WS /graphene heterostructure, involving a three-body collision between electrons in WS and both acoustic phonons and defects in graphene. This interaction manifests as the reduced defect-related Raman resonant activity and the accelerated electron-phonon scattering time from 7.1 to 2.4 ps. Furthermore, the ultrafast interlayer coupling process is directly imaged. These insights will advance the fundamental knowledge of heat dissipation in nanoscale devices, and enable new ways to dynamically manipulate electrons and phonons via defects in van der Waals heterostructures.
工程超快层间耦合为原子级薄的范德华异质结构中的新量子现象和新型器件功能提供了途径。然而,由于单层材料的所有原子都暴露在界面处,层间耦合极易受到缺陷的影响,导致通过热产生的高能量耗散和低器件性能。在超快和原子尺度上研究缺陷如何影响层间耦合仍然是一个挑战。在此,利用飞秒瞬态吸收显微镜,在WS/石墨烯异质结构中发现了一种新的缺陷诱导超快层间电子-声子耦合途径,涉及WS中的电子与石墨烯中的声子和缺陷之间的三体碰撞。这种相互作用表现为与缺陷相关的拉曼共振活性降低,以及电子-声子散射时间从7.1皮秒加速到2.4皮秒。此外,还直接成像了超快层间耦合过程。这些见解将推动对纳米级器件中热耗散的基础知识的了解,并通过范德华异质结构中的缺陷实现动态操纵电子和声子的新方法。