Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China.
Nano Lett. 2023 Mar 8;23(5):1850-1857. doi: 10.1021/acs.nanolett.2c04795. Epub 2023 Feb 17.
Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron-hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene-WS vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
二维(2D)材料的无键合集成产生了具有奇特光学和电子特性的范德华(vdW)异质结。在 vdW 界面上操纵光生电子-空穴对的分离和复合对于光电应用至关重要。先前的研究揭示了缺陷在捕获光生电荷载流子以调节光电导增益以进行光电检测方面的关键作用。然而,缺陷在调节界面电荷载流子动力学方面的性质和作用仍然难以捉摸。在这里,我们通过原位光学泵浦太赫兹探针光谱研究了电化学门控下石墨烯-WS vdW 界面的非平衡电荷动力学。我们通过电调谐缺陷占有率来报告对电荷分离态的完全控制,从而对光栅场方向进行控制。我们的结果表明,两个带隙态中的电子占有率,可能源自硫空位,可以解释观察到的丰富的界面电荷转移动力学和电可调光栅场,为优化光电设备提供了微观见解。