Suppr超能文献

大规模基于基因型和表型的机器学习在希佩尔-林道病中的应用。

Large scale genotype- and phenotype-driven machine learning in Von Hippel-Lindau disease.

机构信息

Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada.

Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.

出版信息

Hum Mutat. 2022 Sep;43(9):1268-1285. doi: 10.1002/humu.24392. Epub 2022 May 10.

Abstract

Von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome where individuals are predisposed to tumor development in the brain, adrenal gland, kidney, and other organs. It is caused by pathogenic variants in the VHL tumor suppressor gene. Standardized disease information has been difficult to collect due to the rarity and diversity of VHL patients. Over 4100 unique articles published until October 2019 were screened for germline genotype-phenotype data. Patient data were translated into standardized descriptions using Human Genome Variation Society gene variant nomenclature and Human Phenotype Ontology terms and has been manually curated into an open-access knowledgebase called Clinical Interpretation of Variants in Cancer. In total, 634 unique VHL variants, 2882 patients, and 1991 families from 427 papers were captured. We identified relationship trends between phenotype and genotype data using classic statistical methods and spectral clustering unsupervised learning. Our analyses reveal earlier onset of pheochromocytoma/paraganglioma and retinal angiomas, phenotype co-occurrences and genotype-phenotype correlations including hotspots. It confirms existing VHL associations and can be used to identify new patterns and associations in VHL disease. Our database serves as an aggregate knowledge translation tool to facilitate sharing information about the pathogenicity of VHL variants.

摘要

希佩尔-林道(VHL)病是一种遗传性癌症综合征,患者易在脑、肾上腺、肾脏和其他器官发生肿瘤。它是由 VHL 肿瘤抑制基因的致病性变异引起的。由于 VHL 患者的罕见性和多样性,标准化的疾病信息一直难以收集。截至 2019 年 10 月,筛选了 4100 多篇已发表的独特文章,以获取种系基因型-表型数据。使用人类基因组变异协会的基因变异命名法和人类表型本体论术语将患者数据转换为标准化描述,并手动整理到一个名为癌症变异临床解读的开放获取知识库中。总共捕获了 634 个独特的 VHL 变体、2882 名患者和 1991 个来自 427 篇论文的家族。我们使用经典统计方法和无监督学习的谱聚类分析来确定表型和基因型数据之间的关系趋势。我们的分析揭示了嗜铬细胞瘤/副神经节瘤和视网膜血管瘤的发病年龄更早,表型共存和基因型-表型相关性,包括热点。它证实了现有的 VHL 关联,并可用于识别 VHL 疾病中的新模式和关联。我们的数据库是一个综合知识转化工具,用于促进 VHL 变体致病性信息的共享。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae54/9790352/14f931a1e66c/HUMU-43-1268-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验