Suppr超能文献

患者相似性网络在精准医疗中的应用

Patient Similarity Networks for Precision Medicine.

机构信息

The Donnelly Centre, University of Toronto, Toronto, Canada.

The Donnelly Centre, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Department of Computer Science, University of Toronto, Toronto, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.

出版信息

J Mol Biol. 2018 Sep 14;430(18 Pt A):2924-2938. doi: 10.1016/j.jmb.2018.05.037. Epub 2018 Jun 1.

Abstract

Clinical research and practice in the 21st century is poised to be transformed by analysis of computable electronic medical records and population-level genome-scale patient profiles. Genomic data capture genetic and environmental state, providing information on heterogeneity in disease and treatment outcome, but genomic-based clinical risk scores are limited. Achieving the goal of routine precision medicine that takes advantage of these rich genomics data will require computational methods that support heterogeneous data, have excellent predictive performance, and ideally, provide biologically interpretable results. Traditional machine-learning approaches excel at performance, but often have limited interpretability. Patient similarity networks are an emerging paradigm for precision medicine, in which patients are clustered or classified based on their similarities in various features, including genomic profiles. This strategy is analogous to standard medical diagnosis, has excellent performance, is interpretable, and can preserve patient privacy. We review new methods based on patient similarity networks, including Similarity Network Fusion for patient clustering and netDx for patient classification. While these methods are already useful, much work is required to improve their scalability for contemporary genetic cohorts, optimize parameters, and incorporate a wide range of genomics and clinical data. The coming 5 years will provide an opportunity to assess the utility of network-based algorithms for precision medicine.

摘要

在 21 世纪,通过对可计算的电子病历和人群规模的基因组患者谱进行分析,临床研究和实践有望发生变革。基因组数据捕捉遗传和环境状态,提供疾病和治疗结果异质性的信息,但基于基因组的临床风险评分有限。要实现常规精准医学的目标,充分利用这些丰富的基因组数据,就需要计算方法来支持异构数据,具有出色的预测性能,并且理想情况下,提供具有生物学可解释性的结果。传统的机器学习方法在性能上表现出色,但通常可解释性有限。患者相似性网络是精准医学的一种新兴范例,其中患者根据其在各种特征(包括基因组谱)上的相似性进行聚类或分类。这种策略类似于标准的医学诊断,具有出色的性能、可解释性,并能保护患者隐私。我们回顾了基于患者相似性网络的新方法,包括用于患者聚类的相似网络融合和用于患者分类的 netDx。虽然这些方法已经很有用,但仍需要做大量工作来提高它们对当代遗传队列的可扩展性、优化参数,并纳入广泛的基因组和临床数据。未来 5 年将有机会评估基于网络的算法在精准医学中的效用。

相似文献

1
Patient Similarity Networks for Precision Medicine.患者相似性网络在精准医疗中的应用
J Mol Biol. 2018 Sep 14;430(18 Pt A):2924-2938. doi: 10.1016/j.jmb.2018.05.037. Epub 2018 Jun 1.
4
Network Approaches for Precision Oncology.网络方法在精准肿瘤学中的应用。
Adv Exp Med Biol. 2022;1361:199-213. doi: 10.1007/978-3-030-91836-1_11.
8
Artificial intelligence, physiological genomics, and precision medicine.人工智能、生理基因组学和精准医学。
Physiol Genomics. 2018 Apr 1;50(4):237-243. doi: 10.1152/physiolgenomics.00119.2017. Epub 2018 Jan 26.
10
Advances in AI and machine learning for predictive medicine.人工智能和机器学习在预测医学中的进展。
J Hum Genet. 2024 Oct;69(10):487-497. doi: 10.1038/s10038-024-01231-y. Epub 2024 Feb 29.

引用本文的文献

2
Visible neural networks for multi-omics integration: a critical review.用于多组学整合的可视化神经网络:批判性综述
Front Artif Intell. 2025 Jul 17;8:1595291. doi: 10.3389/frai.2025.1595291. eCollection 2025.
7
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.

本文引用的文献

2
deepNF: deep network fusion for protein function prediction.深度网络融合的蛋白质功能预测。
Bioinformatics. 2018 Nov 15;34(22):3873-3881. doi: 10.1093/bioinformatics/bty440.
3
Deep learning for biology.用于生物学的深度学习
Nature. 2018 Feb 22;554(7693):555-557. doi: 10.1038/d41586-018-02174-z.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验