Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, Canada.
Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States.
Elife. 2022 Apr 27;11:e73424. doi: 10.7554/eLife.73424.
Speed-dependent interlimb coordination allows animals to maintain stable locomotion under different circumstances. The V3 neurons are known to be involved in interlimb coordination. We previously modeled the locomotor spinal circuitry controlling interlimb coordination (Danner et al., 2017). This model included the local V3 neurons that mediate mutual excitation between left and right rhythm generators (RGs). Here, our focus was on V3 neurons involved in ascending long propriospinal interactions (aLPNs). Using retrograde tracing, we revealed a subpopulation of lumbar V3 aLPNs with contralateral cervical projections. V3 mice, in which all V3 neurons were silenced, had a significantly reduced maximal locomotor speed, were unable to move using stable trot, gallop, or bound, and predominantly used a lateral-sequence walk. To reproduce this data and understand the functional roles of V3 aLPNs, we extended our previous model by incorporating diagonal V3 aLPNs mediating inputs from each lumbar RG to the contralateral cervical RG. The extended model reproduces our experimental results and suggests that locally projecting V3 neurons, mediating left-right interactions within lumbar and cervical cords, promote left-right synchronization necessary for gallop and bound, whereas the V3 aLPNs promote synchronization between diagonal fore and hind RGs necessary for trot. The model proposes the organization of spinal circuits available for future experimental testing.
速度依赖的肢体间协调使动物能够在不同情况下保持稳定的运动。已知 V3 神经元参与肢体间协调。我们之前构建了控制肢体间协调的运动脊髓回路模型(Danner 等人,2017 年)。该模型包括局部 V3 神经元,它们介导左右节律发生器(RG)之间的相互兴奋。在这里,我们关注的是参与上行长固有脊髓相互作用(aLPNs)的 V3 神经元。使用逆行追踪,我们揭示了具有对侧颈突投影的腰 V3 aLPNs 的一个亚群。所有 V3 神经元被沉默的 V3 小鼠的最大运动速度显著降低,无法使用稳定的小跑、疾驰或跳跃移动,并且主要使用侧向序列行走。为了再现这些数据并理解 V3 aLPNs 的功能作用,我们通过整合从每个腰 RG 到对侧颈 RG 的对角 V3 aLPNs 来扩展我们之前的模型。扩展模型再现了我们的实验结果,并表明在腰和颈脊髓内介导左右相互作用的局部投射 V3 神经元促进疾驰和跳跃所必需的左右同步,而 V3 aLPNs 则促进对角前和后 RG 之间的同步,这对于小跑是必需的。该模型提出了可供未来实验测试的脊髓回路的组织。