Wieder Carsten, Peres da Silva Roberta, Witts Jessica, Jäger Christof Martin, Geib Elena, Brock Matthias
Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
Institute of Molecular Physiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
Fungal Biol Biotechnol. 2022 Apr 27;9(1):8. doi: 10.1186/s40694-022-00138-7.
Non-ribosomal peptide synthetase-like (NRPS-like) enzymes are highly enriched in fungal genomes and can be discriminated into reducing and non-reducing enzymes. Non-reducing NRPS-like enzymes possess a C-terminal thioesterase domain that catalyses the condensation of two identical aromatic α-keto acids under the formation of enzyme-specific substrate-interconnecting core structures such as terphenylquinones, furanones, butyrolactones or dioxolanones. Ascocoryne sarcoides produces large quantities of ascocorynin, which structurally resembles a terphenylquinone produced from the condensation of p-hydroxyphenylpyruvate and phenylpyruvate. Since the parallel use of two different substrates by a non-reducing NRPS-like enzyme appeared as highly unusual, we investigated the biosynthesis of ascocorynin in A. sarcoides.
Here, we searched the genome of A. sarcoides for genes coding for non-reducing NRPS-like enzymes. A single candidate gene was identified that was termed acyN. Heterologous gene expression confirmed that AcyN is involved in ascocorynin production but only produces the non-hydroxylated precursor polyporic acid. Although acyN is embedded in an ascocorynin biosynthesis gene cluster, a gene encoding a monooxygenase required for the hydroxylation of polyporic acid was not present. Expression analyses of all monooxygenase-encoding genes from A. sarcoides identified a single candidate that showed the same expression pattern as acyN. Accordingly, heterologous co-expression of acyN and the monooxygenase gene resulted in the production of ascocorynin. Structural modelling of the monooxygenase suggests that the hydrophobic substrate polyporic acid enters the monooxygenase from a membrane facing entry site and is converted into the more hydrophilic product ascocorynin, which prevents its re-entry for a second round of hydroxylation.
This study characterises the first naturally occurring polyporic acid synthetase from an ascomycete. It confirms the high substrate and product specificity of this non-reducing NRPS-like enzyme and highlights the requirement of a monooxygenase to produce the terphenylquinone ascocorynin.
非核糖体肽合成酶样(NRPS样)酶在真菌基因组中高度富集,可分为还原型和非还原型酶。非还原型NRPS样酶具有一个C端硫酯酶结构域,该结构域催化两个相同的芳香族α-酮酸缩合,形成酶特异性的底物连接核心结构,如三联苯醌、呋喃酮、丁内酯或二氧戊环酮。肉色囊盘菌产生大量的囊盘菌素,其结构类似于由对羟基苯丙酮酸和苯丙酮酸缩合产生的三联苯醌。由于非还原型NRPS样酶同时使用两种不同底物的情况非常罕见,我们研究了肉色囊盘菌中囊盘菌素的生物合成。
在此,我们在肉色囊盘菌的基因组中搜索编码非还原型NRPS样酶的基因。鉴定出一个单一的候选基因,命名为acyN。异源基因表达证实AcyN参与囊盘菌素的产生,但仅产生非羟基化的前体多孔酸。尽管acyN嵌入在囊盘菌素生物合成基因簇中,但不存在编码多孔酸羟基化所需单加氧酶的基因。对肉色囊盘菌所有编码单加氧酶的基因进行表达分析,确定了一个单一的候选基因,其表达模式与acyN相同。因此,acyN与单加氧酶基因的异源共表达导致了囊盘菌素的产生。单加氧酶的结构建模表明,疏水底物多孔酸从面向膜的进入位点进入单加氧酶,并转化为亲水性更强的产物囊盘菌素,这阻止了其再次进入进行第二轮羟基化。
本研究鉴定了首个来自子囊菌的天然存在的多孔酸合成酶。它证实了这种非还原型NRPS样酶具有高度的底物和产物特异性,并突出了产生三联苯醌囊盘菌素需要单加氧酶。