Pham D K
Institute of Applied Technology, Thu Dau Mot University Binh Duong Province Vietnam
RSC Adv. 2021 Aug 25;11(46):28659-28666. doi: 10.1039/d1ra04531h. eCollection 2021 Aug 23.
van der Waals heterostructures (vdWHs) based on 2D layered materials with select properties are paving the way to integration at the atomic scale, and may give rise to new heterostructures exhibiting absolutely novel physics and versatility. Herein, we investigate the structural and contact types in a 2D vdW heterobilayer between MoGeN and MoSiN monolayers, and the monolayers in the presence of electrical graphene (GR) contact. In the ground state, the MoGeN/MoSiN heterobilayer forms type-II band alignment, which effectively promotes the separation of electrons and holes and provides opportunity for further electrons and holes. Thus, the MoGeN/MoSiN heterobilayer is promising for designing optoelectronic devices with significantly suppressed carrier-recombination. Interestingly, the insertion of the GR contact to a MoGeN/MoSiN heterobilayer gives rise to the formation of a metal/semiconductor contact. Depending on the GR position relative to the MoGeN/MoSiN heterobilayer, the GR-based heterostructure can form either an n-type or p-type Schottky contact. Intriguingly, the contact barriers in the GR contacted MoGeN/MoSiN heterobilayer are significantly smaller than those in the GR contacted with MoGeN or MoSiN monolayers, suggesting that the GR/MoGeN/MoSiN heterostructure offers an effective pathway to reduce the Schottky barrier, which is highly beneficial for improving the charge injection efficiency of the contact heterostructures. More interestingly, by controlling the interlayer coupling through stacking, both the Schottky barriers and contact types in the GR/MoGeN/MoSiN heterostructure can be manipulated. Our findings could provide theoretical insight into the design of nanodevices based on a GR and MoGeN/MoSiN heterobilayer.
基于具有特定性质的二维层状材料的范德华异质结构(vdWHs)正在为原子尺度的集成铺平道路,并可能产生展现出全新物理特性和多功能性的新型异质结构。在此,我们研究了MoGeN和MoSiN单层之间二维范德华异质双层中的结构和接触类型,以及存在电石墨烯(GR)接触时的单层情况。在基态下,MoGeN/MoSiN异质双层形成II型能带排列,这有效地促进了电子和空穴的分离,并为进一步的电子和空穴提供了机会。因此,MoGeN/MoSiN异质双层在设计具有显著抑制载流子复合的光电器件方面具有潜力。有趣的是,在MoGeN/MoSiN异质双层中插入GR接触会导致形成金属/半导体接触。根据GR相对于MoGeN/MoSiN异质双层的位置,基于GR的异质结构可以形成n型或p型肖特基接触。有趣的是,GR接触的MoGeN/MoSiN异质双层中的接触势垒明显小于与MoGeN或MoSiN单层接触的GR中的接触势垒,这表明GR/MoGeN/MoSiN异质结构提供了一条有效降低肖特基势垒的途径,这对于提高接触异质结构的电荷注入效率非常有益。更有趣的是,通过控制堆叠来调节层间耦合,可以操纵GR/MoGeN/MoSiN异质结构中的肖特基势垒和接触类型。我们的发现可以为基于GR和MoGeN/MoSiN异质双层的纳米器件设计提供理论见解。