Brovarets' Ol'ha O, Muradova Alona, Hovorun Dmytro M
Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine 150 Akademika Zabolotnoho Street 03680 Kyiv Ukraine
Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv 2-h Akademika Hlushkova Avenue 03022 Kyiv Ukraine.
RSC Adv. 2021 Jul 27;11(41):25700-25730. doi: 10.1039/d0ra08702e. eCollection 2021 Jul 19.
At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of quantum-mechanical theory, we provide for the first time a comprehensive investigation of the physico-chemical mechanisms of the 55 conformational transformations of the biologically-important G·C nucleobase pairs - Watson-Crick (WC), reverse Watson-Crick (rWC), Hoogsteen (H), reverse Hoogsteen (rH), wobble (w) and reverse wobble (rw) base pairs by the participation of the G and C bases in the canonical and rare tautomeric forms ("r" - means reverse configuration of the base pair). It was established that all these G·C nucleobase pairs can conformationally transform into each other without the changing of the tautomeric status of the G and C bases. These transitions occur through significantly non-planar transition states the mutual rotation of the G and C bases relative to each other within the G·C nucleobase pair around the upper, middle or lower intermolecular H-bonds: WC ↔ rWC, WC ↔ rw, rWC ↔ WC, rWC ↔ w, w ↔ rw, H ↔ rH, H ↔ rw, rH ↔ H, rH ↔ w, w ↔ rw. Gibbs free energies Δ of activation for these conformational transformations are Δ = 2.96-19.04/3.58-13.36 kcal mol (in vacuum under normal conditions ( = 298.15 K)), which means that these reactions proceed quite fast. Obtained conformational transformations are accompanied by the disruption and further formation of the intermolecular specific contacts in the G·C nucleobase pairs (H-bonds and attractive van der Waals contacts). As a result, 76 conformers of the G·C nucleobase pairs were established - 48 base pairs in WC, rWC, w and rw configurations and 28 base pairs in H, rH, w and rw configurations with relative Gibbs free Δ/electronic Δ energies in the range Δ/Δ = 0.00-44.73/0.00-46.99 and Δ/Δ = 0.00-37.52/0.00-38.54 kcal mol, respectively (in vacuum under normal conditions). Experimental investigation and verification of the novel G·C nucleobase pairs are promising tasks for the future research. Based on the obtained data, biologically important conclusions were made about the importance of the conformational mobility of the G·C nucleobase pairs for the understanding of the functioning of the DNA and RNA molecules and their transition from the parallel into the anti-parallel duplexes and .
在量子力学理论的MP2/6 - 311++G(2df,pd)//B3LYP/6 - 311++G(d,p)水平上,我们首次全面研究了具有生物学重要性的G·C核碱基对(沃森 - 克里克(WC)、反向沃森 - 克里克(rWC)、 hoogsteen(H)、反向hoogsteen(rH)、摆动(w)和反向摆动(rw)碱基对)的55种构象转变的物理化学机制,其中G和C碱基以标准和罕见互变异构形式参与(“r”表示碱基对的反向构型)。结果表明,所有这些G·C核碱基对都可以在不改变G和C碱基互变异构状态的情况下相互进行构象转变。这些转变通过明显非平面的过渡态发生,即G·C核碱基对内G和C碱基围绕上、中或下分子间氢键相互相对旋转:WC ↔ rWC、WC ↔ rw、rWC ↔ WC、rWC ↔ w、w ↔ rw、H ↔ rH、H ↔ rw、rH ↔ H、rH ↔ w、w ↔ rw。这些构象转变的吉布斯自由能活化能Δ为Δ = 2.96 - 19.04/3.58 - 13.36 kcal mol(在正常条件下(T = 298.15 K)的真空中),这意味着这些反应进行得相当快。所获得的构象转变伴随着G·C核碱基对中分子间特定接触(氢键和有吸引力的范德华接触)的破坏和进一步形成。结果,确定了76种G·C核碱基对的构象异构体——WC、rWC、w和rw构型中有48个碱基对,H、rH、w和rw构型中有28个碱基对,其相对吉布斯自由能Δ/电子能Δ分别在Δ/Δ = 0.00 - 44.73/0.00 - 46.99和Δ/Δ = 0.00 - 37.52/0.00 - 38.54 kcal mol范围内(在正常条件下的真空中)。对新型G·C核碱基对进行实验研究和验证是未来研究的有前景的任务。基于所获得的数据,得出了关于G·C核碱基对构象流动性对于理解DNA和RNA分子功能以及它们从平行双链转变为反平行双链的重要性的具有生物学重要意义的结论。