Vu Tuan V, Phuc Huynh V, Ahmad Sohail, Nha Vo Quang, Van Lanh Chu, Rai D P, Kartamyshev A I, Pham Khang D, Nhan Le Cong, Hieu Nguyen N
Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University Ho Chi Minh City Viet Nam
Faculty of Electrical & Electronics Engineering, Ton Duc Thang University Ho Chi Minh City Viet Nam.
RSC Adv. 2021 Jul 1;11(38):23280-23287. doi: 10.1039/d1ra04065k.
Motivated by very recent successful experimental transformation of AB-stacking bilayer graphene into fluorinated single-layer diamond (namely fluorinated diamane CF) [P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee and R. S. Ruoff, , 2020, , 59-66], we systematically investigate the structural, elastic, electronic, transport, and optical properties of fluorinated diamane CF by using density functional theory. Our obtained results demonstrate that at the ground state, the lattice constant of CF is 2.56 Å with chemical bonding between the C-C interlayer and intralayer bond lengths of about 1.5 Å which are close to the C-C bonding in the bulk diamond. Based on calculations for the phonon spectrum and molecular dynamics simulations, the structure of CF is confirmed to be dynamically and thermally stable. CF exhibits superior mechanical properties with a very high Young's modulus of 493.19 N m. Upon fluorination, the formation of C-C bonding between graphene layers has resulted in a comprehensive alteration of electronic properties of CF. CF is a direct semiconductor with a large band gap and phase transitions are found when a biaxial strain or external electric field is applied. Interestingly, CF has very high electron mobility, up to 3.03 × 10 cm V s, much higher than other semiconductor compounds. Our findings not only provide a comprehensive insight into the physical properties of CF but also open up its applicability in nanoelectromechanical and optoelectronic devices.
受近期将AB堆叠双层石墨烯成功实验转化为氟化单层金刚石(即氟化二胺CF)[P. V. 巴赫列夫、M. 黄、M. 萨克塞纳、S. W. 李、S. H. 朱、S. O. 帕克、J. 董、D. C. 卡马乔 - 莫吉卡、S. 金、Y. 权、M. 比斯瓦尔、F. 丁、S. K. 夸克、Z. 李和R. S. 鲁夫,《自然通讯》,2020年,第11卷,第59 - 66页]的启发,我们利用密度泛函理论系统地研究了氟化二胺CF的结构、弹性、电子、输运和光学性质。我们获得的结果表明,在基态下,CF的晶格常数为2.56 Å,层间C - C化学键和层内键长约为1.5 Å,这与块状金刚石中的C - C键相近。基于声子谱计算和分子动力学模拟,证实CF的结构在动力学和热学上是稳定的。CF表现出优异的力学性能,杨氏模量高达493.19 N/m。氟化后,石墨烯层之间形成C - C键导致CF的电子性质发生了全面改变。CF是一种直接带隙半导体,施加双轴应变或外部电场时会发生相变。有趣的是,CF具有非常高的电子迁移率,高达3.03×10⁵ cm² V⁻¹ s⁻¹,远高于其他半导体化合物。我们的发现不仅全面深入地了解了CF的物理性质,还为其在纳米机电和光电器件中的应用开辟了道路。