Suppr超能文献

使用深度神经网络分析自动进行凹痕红细胞计数:一种测量镰状细胞贫血患者脾功能的新方法。

Automating Pitted Red Blood Cell Counts Using Deep Neural Network Analysis: A New Method for Measuring Splenic Function in Sickle Cell Anaemia.

作者信息

Nardo-Marino Amina, Braunstein Thomas H, Petersen Jesper, Brewin John N, Mottelson Mathis N, Williams Thomas N, Kurtzhals Jørgen A L, Rees David C, Glenthøj Andreas

机构信息

Centre for Haemoglobinopathies, Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.

出版信息

Front Physiol. 2022 Apr 5;13:859906. doi: 10.3389/fphys.2022.859906. eCollection 2022.

Abstract

The spleen plays an important role in the body's defence against bacterial infections. Measuring splenic function is of interest in multiple conditions, including sickle cell anaemia (SCA), where spleen injury occurs early in life. Unfortunately, there is no direct and simple way of measuring splenic function, and it is rarely assessed in clinical or research settings. Manual counts of pitted red blood cells (RBCs) observed with differential interference contrast (DIC) microscopy is a well-validated surrogate biomarker of splenic function. The method, however, is both user-dependent and laborious. In this study, we propose a new automated workflow for counting pitted RBCs using deep neural network analysis. Secondly, we assess the durability of fixed RBCs for pitted RBC counts over time. We included samples from 48 children with SCA and 10 healthy controls. Cells were fixed in paraformaldehyde and examined using an oil-immersion objective, and microscopy images were recorded with a DIC setup. Manual pitted RBC counts were performed by examining a minimum of 500 RBCs for pits, expressing the proportion of pitted RBCs as a percentage (%PIT). Automated pitted RBC counts were generated by first segmenting DIC images using a Zeiss Intellesis deep learning model, recognising and segmenting cells and pits from background. Subsequently, segmented images were analysed using a small ImageJ macro language script. Selected samples were stored for 24 months, and manual pitted RBC counts performed at various time points. When comparing manual and automated pitted RBC counts, we found the two methods to yield comparable results. Although variability between the measurements increased with higher %PIT, this did not change the diagnosis of asplenia. Furthermore, we found no significant changes in %PIT after storing samples for up to 24 months and under varying temperatures and light exposures. We have shown that automated pitted RBC counts, produced using deep neural network analysis, are comparable to manual counts, and that fixed samples can be stored for long periods of time without affecting the %PIT. Automating pitted RBC counts makes the method less time consuming and results comparable across laboratories.

摘要

脾脏在人体抵御细菌感染中发挥着重要作用。在多种病症中,测量脾脏功能都备受关注,包括镰状细胞贫血(SCA),该病在生命早期就会出现脾脏损伤。遗憾的是,目前尚无直接且简便的测量脾脏功能的方法,在临床或研究环境中也很少对其进行评估。通过微分干涉对比(DIC)显微镜观察对去核红细胞(RBC)进行人工计数是一种经过充分验证的脾脏功能替代生物标志物。然而,该方法既依赖操作人员,又很繁琐。在本研究中,我们提出了一种使用深度神经网络分析来计数去核红细胞的新自动化工作流程。其次,我们评估了固定红细胞用于去核红细胞计数随时间的耐久性。我们纳入了48名患有SCA的儿童和10名健康对照的样本。细胞用多聚甲醛固定,使用油浸物镜进行检查,并用DIC装置记录显微镜图像。通过检查至少500个红细胞的去核情况进行人工去核红细胞计数,将去核红细胞的比例表示为百分比(%PIT)。自动化去核红细胞计数首先使用蔡司Intellesis深度学习模型对DIC图像进行分割,从背景中识别并分割细胞和去核情况。随后,使用一个小型ImageJ宏语言脚本对分割后的图像进行分析。选取的样本保存24个月,并在不同时间点进行人工去核红细胞计数。在比较人工和自动化去核红细胞计数时,我们发现这两种方法产生的结果具有可比性。尽管随着%PIT的升高,测量之间的变异性增加,但这并未改变无脾的诊断。此外,我们发现在将样本保存长达24个月以及在不同温度和光照条件下,%PIT没有显著变化。我们已经表明,使用深度神经网络分析产生的自动化去核红细胞计数与人工计数相当,并且固定样本可以长时间保存而不影响%PIT。去核红细胞计数的自动化使该方法耗时更少,且各实验室的结果具有可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b30a/9037235/a92aa1297ec6/fphys-13-859906-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验