Chua Rodney, Cai Yi, Lim Pei Qi, Kumar Sonal, Satish Rohit, Manalastas William, Ren Hao, Verma Vivek, Meng Shize, Morris Samuel A, Kidkhunthod Pinit, Bai Jianming, Srinivasan Madhavi
School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave., Singapore 639977, Singapore.
Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
ACS Appl Mater Interfaces. 2020 May 20;12(20):22862-22872. doi: 10.1021/acsami.0c03423. Epub 2020 May 8.
Although "water-in-salt" electrolytes have opened a new pathway to expand the electrochemical stability window of aqueous electrolytes, the electrode instability and irreversible proton co-insertion caused by aqueous media still hinder the practical application, even when using exotic fluorinated salts. In this study, an accessible hybrid electrolyte class based on common sodium salts is proposed, and crucially an ethanol-rich media is introduced to achieve highly stable Na-ion electrochemistry. Here, ethanol exerts a strong hydrogen-bonding effect on water, simultaneously expanding the electrochemical stability window of the hybridized electrolyte to 2.5 V, restricting degradation activities, reducing transition metal dissolution from the cathode material, and improving electrolyte-electrode wettability. The binary ethanol-water solvent enables the impressive cycling of sodium-ion batteries based on perchlorate, chloride, and acetate electrolyte salts. Notably, a NaMnO electrode exhibits both high capacity (81 mAh g) and a remarkably long cycle life >1000 cycles at 100 mA g (a capacity decay rate per cycle of 0.024%) in a 1 M sodium acetate system. The NaMnO/Zn full cells also show excellent cycling stability and rate capability in a wide temperature range. The gained understanding of the hydrogen-bonding interactions in the hybridized electrolyte can provide new battery chemistry guidelines in designing promising candidates for developing low-cost and long-lifespan batteries based on other (Li, K, Zn Mg, and Al) systems.
尽管“盐包水”电解质为拓展水系电解质的电化学稳定窗口开辟了一条新途径,但即使使用特殊的氟化盐,水相介质导致的电极不稳定性和不可逆质子共嵌入仍阻碍其实际应用。在本研究中,提出了一种基于常见钠盐的可及混合电解质类别,关键是引入富含乙醇的介质以实现高度稳定的钠离子电化学性能。在此,乙醇对水施加强烈的氢键作用,同时将混合电解质的电化学稳定窗口扩大至2.5 V,限制降解活性,减少过渡金属从阴极材料的溶解,并改善电解质与电极的润湿性。二元乙醇 - 水溶剂使基于高氯酸盐、氯化物和醋酸盐电解质盐的钠离子电池实现令人印象深刻的循环性能。值得注意的是,在1 M醋酸钠体系中,NaMnO电极在100 mA g下展现出高容量(81 mAh g)和超过1000次循环的超长循环寿命(每循环容量衰减率为0.024%)。NaMnO/Zn全电池在宽温度范围内也表现出优异的循环稳定性和倍率性能。对混合电解质中氢键相互作用的深入理解可为设计基于其他(锂、钾、锌、镁和铝)体系的低成本、长寿命电池的有前景候选材料提供新的电池化学指导方针。