文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物制造的铂纳米颗粒:作为一种潜在的纳米药物对抗乳腺癌细胞和耐药细菌的治疗评估。

Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria.

作者信息

Manzoor Saliha, Bashir Dar Junaid, Imtiyaz Khalid, Rizvi M Moshahid A, Ahamad Irshad, Fatma Tasneem, Agarwal Nidhi Bharal, Arora Indu, Samim Mohammed

机构信息

Department of Chemistry, School of Chemical and Life Sciences Jamia Hamdard New Delhi-110062 India

Genome Biology Lab, Department of Biosciences Jamia Milia Islamia New Delhi-110025 India.

出版信息

RSC Adv. 2021 Jul 16;11(40):24900-24916. doi: 10.1039/d1ra03133c. eCollection 2021 Jul 13.


DOI:10.1039/d1ra03133c
PMID:35481013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9036961/
Abstract

Use of plant extracts for the synthesis of various metal nanoparticles has gained much importance recently because it is a simple, less hazardous, conservative and cost-effective method. In this research work, platinum nanoparticles were synthesized by treating platinum ions with the leaf extract of and their structural properties were studied using various characterization techniques. The formation of platinum nanoparticles was confirmed by the disappearance of the absorbance peak at 261 nm in UV-visible spectra. The results of gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR) analysis showed functional moieties responsible for bio-reduction of metal ions and stabilization of platinum nanoparticles. The use of dynamic light scattering (DLS) imaging techniques confirmed the formation of stable monodispersed platinum nanoparticles showing a zeta potential of -23.4 mV. The morphological examination using high resolution transmission electron microscopy (HR-TEM) and Scanning electron microscopy (SEM) confirmed the formation of spherical platinum nanoparticles with an average diameter of 113.2 nm. X-ray powder diffraction (XRD) techniques showed the crystalline nature of biosynthesized platinum nanoparticles with a face-centered cubic structure. The results of energy-dispersive X-ray spectroscopy (EDAX) showed 100% platinum content by weight confirming the purity of the sample. The cytotoxic effect of biosynthesized platinum nanoparticles assessed in a breast cancer (MCF-7) cell-line by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, revealed an IC of 167.2 μg ml. The results of a wound healing assay showed that treatment with platinum nanoparticles induced an anti-migratory effect on MCF-7 cells. In the cell cycle phase distribution, treatment with platinum nanoparticles inhibited cell proliferation as determined by flow cytometry with PI staining. Significant cell cycle arrest was detected at the G0/G1 phase with a notable decrease in the distribution of cells in the S and G2/M phases. The anti-bacterial activity of bio-synthesized platinum nanoparticles was evaluated against four pathogenic bacteria (Gram positive), (Gram negative), (Gram negative) and (Gram negative). The biosynthesized platinum nanoparticles were found to show dose-dependent inhibition against pathogenic bacteria with a significant effect on Gram-negative bacteria compared to Gram-positive bacteria. This synergistic blend of green and simplistic synthesis coupled with anti-proliferative and anti-bacterial properties makes these biogenic nanoparticles suitable in nanomedicine.

摘要

近年来,使用植物提取物合成各种金属纳米颗粒变得非常重要,因为这是一种简单、危害较小、环保且经济高效的方法。在本研究工作中,通过用[植物名称]的叶提取物处理铂离子来合成铂纳米颗粒,并使用各种表征技术研究其结构性质。紫外可见光谱中261 nm处吸光度峰的消失证实了铂纳米颗粒的形成。气相色谱 - 质谱联用(GC - MS)和傅里叶变换红外光谱(FT - IR)分析结果表明了负责金属离子生物还原和铂纳米颗粒稳定化的官能团。动态光散射(DLS)成像技术的使用证实了稳定的单分散铂纳米颗粒的形成,其zeta电位为 - 23.4 mV。使用高分辨率透射电子显微镜(HR - TEM)和扫描电子显微镜(SEM)进行的形态学检查证实了平均直径为113.2 nm的球形铂纳米颗粒的形成。X射线粉末衍射(XRD)技术显示了生物合成的铂纳米颗粒具有面心立方结构的晶体性质。能量色散X射线光谱(EDAX)结果显示样品的铂含量按重量计为100%,证实了样品的纯度。通过3 -(4,5 - 二甲基噻唑 - 2 - 基)- 2,5 - 二苯基四氮唑溴盐(MTT)法在乳腺癌(MCF - 7)细胞系中评估生物合成的铂纳米颗粒的细胞毒性作用,结果显示半数抑制浓度(IC)为167.2 μg/ml。伤口愈合试验结果表明,用铂纳米颗粒处理对MCF - 7细胞具有抗迁移作用。在细胞周期阶段分布中,用铂纳米颗粒处理抑制了细胞增殖,这通过用碘化丙啶(PI)染色的流式细胞术测定。在G0/G1期检测到明显的细胞周期停滞,S期和G2/M期的细胞分布显著减少。评估了生物合成的铂纳米颗粒对四种病原菌(革兰氏阳性菌[细菌名称1]、革兰氏阴性菌[细菌名称2]、革兰氏阴性菌[细菌名称3]和革兰氏阴性菌[细菌名称4])的抗菌活性。发现生物合成的铂纳米颗粒对病原菌表现出剂量依赖性抑制,与革兰氏阳性菌相比,对革兰氏阴性菌有显著影响。这种绿色且简单的合成与抗增殖和抗菌特性的协同组合使得这些生物源性纳米颗粒适用于纳米医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/f73728aa8300/d1ra03133c-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/1760dadd74db/d1ra03133c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/3d2f215a027e/d1ra03133c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/31fb63e1b6ea/d1ra03133c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/493503d7def1/d1ra03133c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/53302a7d3f2a/d1ra03133c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/cf62ef75b06b/d1ra03133c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/f48e4dfc8053/d1ra03133c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/501d1029631f/d1ra03133c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/56d7e18ab552/d1ra03133c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/a3d5a3d4e12b/d1ra03133c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/00fb0f0bd0cc/d1ra03133c-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/737159a47fa8/d1ra03133c-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/c668f9b09c21/d1ra03133c-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/f73728aa8300/d1ra03133c-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/1760dadd74db/d1ra03133c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/3d2f215a027e/d1ra03133c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/31fb63e1b6ea/d1ra03133c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/493503d7def1/d1ra03133c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/53302a7d3f2a/d1ra03133c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/cf62ef75b06b/d1ra03133c-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/f48e4dfc8053/d1ra03133c-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/501d1029631f/d1ra03133c-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/56d7e18ab552/d1ra03133c-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/a3d5a3d4e12b/d1ra03133c-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/00fb0f0bd0cc/d1ra03133c-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/737159a47fa8/d1ra03133c-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/c668f9b09c21/d1ra03133c-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd98/9036961/f73728aa8300/d1ra03133c-f14.jpg

相似文献

[1]
Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria.

RSC Adv. 2021-7-16

[2]
Green Synthesis and Characterization of Cobalt Oxide Nanoparticles Using Leaves Extracts and Their Photocatalytic and Biological Activities.

Molecules. 2022-9-1

[3]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

[4]
A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7 cell line.

Environ Res. 2021-7

[5]
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.

Int J Nanomedicine. 2020-11-2

[6]
Biosynthesis of Silver Nanoparticles Using Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines.

ACS Omega. 2020-3-2

[7]
Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens.

Sci Rep. 2020-10-8

[8]
Biosynthesis of Silver Nanoparticles from : Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities.

Int J Nanomedicine. 2019-12-11

[9]
Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications.

J Genet Eng Biotechnol. 2021-1-28

[10]
Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract.

Curr Pharm Biotechnol. 2017

引用本文的文献

[1]
Antimicrobial, antibiofilm, and antiurease activities of green-synthesized Zn, Se, and ZnSe nanoparticles against Streptococcus salivarius and Proteus mirabilis.

Bioprocess Biosyst Eng. 2025-4

[2]
Biosynthesis of silver nanoparticles from macroalgae Hormophysa triquetra and investigation of its antibacterial activity and mechanism against pathogenic bacteria.

Sci Rep. 2025-1-20

[3]
Platinum Group Metals Nanoparticles in Breast Cancer Therapy.

Pharmaceutics. 2024-9-3

[4]
Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review.

Biomedicines. 2023-1-28

[5]
Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism.

Mater Today Bio. 2023-1-31

[6]
The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine.

Int J Mol Sci. 2022-9-1

[7]
Comprehensive comparison of theranostic nanoparticles in breast cancer.

Am J Clin Exp Immunol. 2022-2-15

[8]
Recent advances in nanoparticles as antibacterial agent.

ADMET DMPK. 2022-2-2

[9]
Cytotoxic and Apoptotic Effects of Chemogenic and Biogenic Nano-sulfur on Human Carcinoma Cells: A Comparative Study.

ACS Omega. 2021-11-23

[10]
Biosynthesis of Smaller-Sized Platinum Nanoparticles Using the Leaf Extract of and Its Antibacterial Activities.

Antibiotics (Basel). 2021-10-20

本文引用的文献

[1]
Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer.

Int J Pharm. 2020-9-25

[2]
Antimicrobial and Antioxidant Activity of Biogenically Synthesized Palladium and Platinum Nanoparticles Using .

Turk J Pharm Sci. 2020-6

[3]
Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging.

J Mater Chem B. 2017-5-21

[4]
A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles.

Nanomaterials (Basel). 2019-12-2

[5]
Peptide-Coated Platinum Nanoparticles with Selective Toxicity against Liver Cancer Cells.

Angew Chem Int Ed Engl. 2019-1-18

[6]
Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives.

Acta Histochem. 2018-4

[7]
Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line.

Colloids Surf B Biointerfaces. 2017-12-21

[8]
anticancer drug test: A new method emerges from the model of glioma stem cells.

Toxicol Rep. 2014-5-22

[9]
Platinum nanoparticles: an exquisite tool to overcome radioresistance.

Cancer Nanotechnol. 2017

[10]
Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats.

Tumour Biol. 2017-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索