Li Sha, Porcel Erika, Remita Hynd, Marco Sergio, Réfrégiers Matthieu, Dutertre Murielle, Confalonieri Fabrice, Lacombe Sandrine
CNRS, UMR 8214, Institut des Sciences Moléculaires d'Orsay, Université Paris Sud, 91405 Orsay Cedex, France.
CNRS, UMR 8000, Laboratoire de Chimie Physique, Université Paris-Sud, 91405 Orsay Cedex, France.
Cancer Nanotechnol. 2017;8(1):4. doi: 10.1186/s12645-017-0028-y. Epub 2017 Jul 11.
Small metallic nanoparticles are proposed as potential nanodrugs to optimize the performances of radiotherapy. This strategy, based on the enrichment of tumours with nanoparticles to amplify radiation effects in the tumour, aims at increasing the cytopathic effect in tumours while healthy tissue is preserved, an important challenge in radiotherapy. Another major cause of radiotherapy failure is the radioresistance of certain cancers. Surprisingly, the use of nanoparticles to overcome radioresistance has not, to the best of our knowledge, been extensively investigated. The mechanisms of radioresistance have been extensively studied using , the most radioresistant organism ever reported, as a model.
In this work, we investigated the impact of ultra-small platinum nanoparticles (1.7 nm) on this organism, including uptake, toxicity, and effects on radiation responses.
We showed that the nanoparticles penetrate cells, despite the 150 nm cell wall thickness with a minimal inhibition concentration on the order of 4.8 mg L. We also found that the nanoparticles amplify gamma ray radiation effects by >40%.
Finally, this study demonstrates the capacity of metallic nanoparticles to amplify radiation in radioresistant organisms, thus opening the perspective to use nanoparticles not only to improve tumour targeting but also to overcome radioresistance.
小型金属纳米颗粒被提议作为潜在的纳米药物以优化放射治疗的性能。该策略基于纳米颗粒在肿瘤中的富集以放大肿瘤内的辐射效应,旨在增加肿瘤中的细胞病变效应,同时保护健康组织,这是放射治疗中的一项重大挑战。放射治疗失败的另一个主要原因是某些癌症的放射抗性。令人惊讶的是,据我们所知,使用纳米颗粒克服放射抗性尚未得到广泛研究。已经使用有史以来报道的最具放射抗性的生物体作为模型对放射抗性机制进行了广泛研究。
在这项工作中,我们研究了超小铂纳米颗粒(1.7纳米)对这种生物体的影响,包括摄取、毒性以及对辐射反应的影响。
我们表明,尽管细胞壁厚度为150纳米,但纳米颗粒仍能穿透细胞,最低抑制浓度约为4.8毫克/升。我们还发现纳米颗粒可将伽马射线辐射效应放大40%以上。
最后,本研究证明了金属纳米颗粒在抗辐射生物体中放大辐射的能力,从而开启了不仅使用纳米颗粒改善肿瘤靶向性,而且克服放射抗性的前景。