Thomas Suzanne T, Shin Yongsoon, La Clair James J, Noel Joseph P
Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies La Jolla CA USA
Materials Sciences Division, Pacific Northwest National Laboratory 902 Battelle Boulevard Richland WA USA.
RSC Adv. 2021 Apr 27;11(26):15512-15518. doi: 10.1039/d1ra00954k. eCollection 2021 Apr 26.
Since the 1950's the Earth's natural carbon cycle has not sufficiently sequestrated excess atmospheric CO contributed by human activities. CO levels rose above 400 ppm in 2013 and are forecasted to exceed 500 ppm by 2070, a level last experienced during the Paleogene period 25-65 MYA. While humanity benefits from the extraction and combustion of carbon from Earth's crust, we have overlooked the impact on global climate change. Here, we present a strategy to mine atmospheric carbon to mitigate CO emissions and create economically lucrative green products. We employ an artificial carbon cycle where agricultural plants capture CO and the carbon is transformed into silicon carbide (SiC), a valuable commercial material. By carefully quantifying the process we show that 14% of plant-sequestered carbon is stored as SiC and estimate the scale needed for this process to have a global impact.
自20世纪50年代以来,地球的自然碳循环一直未能充分封存人类活动产生的过量大气二氧化碳。2013年,二氧化碳水平升至400 ppm以上,预计到2070年将超过500 ppm,这是古近纪2500万至6500万年前最后一次出现的水平。虽然人类从地壳中碳的开采和燃烧中受益,但我们忽略了对全球气候变化的影响。在此,我们提出一种开采大气碳以减少二氧化碳排放并创造经济上有利可图的绿色产品的策略。我们采用一种人工碳循环,即农业植物捕获二氧化碳,然后将碳转化为碳化硅(SiC),一种有价值的商业材料。通过仔细量化这个过程,我们表明14%的植物固碳以碳化硅的形式储存,并估计了这个过程产生全球影响所需的规模。