Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Sleep Breath. 2023 May;27(2):449-457. doi: 10.1007/s11325-022-02629-8. Epub 2022 Apr 28.
This study aimed to develop a machine learning-based questionnaire (BASH-GN) to classify obstructive sleep apnea (OSA) risk by considering risk factor subtypes.
Participants who met study inclusion criteria were selected from the Sleep Heart Health Study Visit 1 (SHHS 1) database. Other participants from the Wisconsin Sleep Cohort (WSC) served as an independent test dataset. Participants with an apnea hypopnea index (AHI) ≥ 15/h were considered as high risk for OSA. Potential risk factors were ranked using mutual information between each factor and the AHI, and only the top 50% were selected. We classified the subjects into 2 different groups, low and high phenotype groups, according to their risk scores. We then developed the BASH-GN, a machine learning-based questionnaire that consists of two logistic regression classifiers for the 2 different subtypes of OSA risk prediction.
We evaluated the BASH-GN on the SHHS 1 test set (n = 1237) and WSC set (n = 1120) and compared its performance with four commonly used OSA screening questionnaires, the Four-Variable, Epworth Sleepiness Scale, Berlin, and STOP-BANG. The model outperformed these questionnaires on both test sets regarding the area under the receiver operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC). The model achieved AUROC (SHHS 1: 0.78, WSC: 0.76) and AUPRC (SHHS 1: 0.72, WSC: 0.74), respectively. The questionnaire is available at https://c2ship.org/bash-gn .
Considering OSA subtypes when evaluating OSA risk may improve the accuracy of OSA screening.
本研究旨在开发一种基于机器学习的问卷(BASH-GN),通过考虑风险因素亚型来对阻塞性睡眠呼吸暂停(OSA)风险进行分类。
从睡眠心脏健康研究访问 1 期(SHHS 1)数据库中选择符合研究纳入标准的参与者。威斯康星州睡眠队列(WSC)的其他参与者作为独立的测试数据集。将呼吸暂停低通气指数(AHI)≥15/h 的参与者视为 OSA 高危人群。使用每个因素与 AHI 之间的互信息对潜在风险因素进行排名,仅选择前 50%的因素。我们根据风险评分将受试者分为低和高表型组两个不同的组。然后,我们开发了基于机器学习的 BASH-GN,它由两个用于 2 种不同 OSA 风险预测亚型的逻辑回归分类器组成。
我们在 SHHS 1 测试集(n=1237)和 WSC 集(n=1120)上评估了 BASH-GN,并将其性能与四种常用的 OSA 筛查问卷(四变量、嗜睡量表、柏林和 STOP-BANG)进行了比较。在两个测试集中,该模型在接受者操作特征曲线下面积(AUROC)和精度-召回曲线下面积(AUPRC)方面均优于这些问卷。该模型在 SHHS 1 中的 AUROC(0.78)和 WSC 中的 AUROC(0.76)以及在 SHHS 1 中的 AUPRC(0.72)和 WSC 中的 AUPRC(0.74)分别实现。问卷可在 https://c2ship.org/bash-gn 获得。
在评估 OSA 风险时考虑 OSA 亚型可能会提高 OSA 筛查的准确性。