Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States.
Acc Chem Res. 2022 May 17;55(10):1435-1444. doi: 10.1021/acs.accounts.2c00102. Epub 2022 Apr 28.
Contrast agents are used in approximately 40% of all magnetic resonance imaging (MRI) procedures to improve the quality of the images based on the distribution and dynamic clearance of the agent. To date, all clinically approved contrast agents are Gd(III) coordination complexes that serve to shorten the longitudinal (T) and transverse (T) proton relaxation times of water. Recent interest in replacing Gd with biologically relevant metal ions such as Mn or Fe has led to increased interest in the aqueous coordination chemistry of their complexes. In this Account, we focus on high-spin Fe(III) complexes that have been recently reported as MRI contrast agents or probes in our laboratory.The highly Lewis acidic Fe(III) center has distinct coordination chemistry in aqueous solutions, facilitating alternative strategies in the design of MRI probes. To illustrate this, we describe different classes of Fe(III) MRI probes with a focus on macrocyclic complexes and multinuclear complexes such as self-assembled metal organic polyhedra (MOP). Our initial efforts focused on macrocyclic complexes of Fe(III) in order to tune spin and oxidation states with the goal of stabilizing high-spin Fe(III) in reducing biological environments. Our probes feature six-coordinate Fe(III) complexes of 1,4,7-triazacyclononane with hydroxypropyl, phosphonate, or carboxylate pendant groups to produce Fe(III) complexes that shorten proton T times predominantly from second-sphere or outer-sphere interactions at neutral pH. Analogues with pentadentate macrocyclic ligands have an inner-sphere water that does not exchange rapidly on the NMR time scale, yet these complexes are effective relaxation agents. Fe(III) macrocyclic complexes in this class can be modified to modulate their biodistribution and pharmacokinetic clearance in mice. The goal of these studies is for the Fe(III) agents to clear as extracellular fluid agents and produce profiles similar to those of Gd agents. Finally, studies of multimeric Fe(III) complexes are of interest to produce probes that give large proton relaxivity. In this approach the two Fe(III) centers are connected through aryl linkers as demonstrated for several macrocyclic complexes. Even more tightly connected Fe(III) centers are produced in a Fe(III) self-assembled cage with relaxivity of 21 mM s at 4.7 T, 37 °C in the presence of serum albumin to which it is tightly bound. This cage enhances contrast of the vasculature as a blood pool agent and accumulates in tumors. Finally, we present our perspectives on the further development of Fe(III) complexes for various applications in MRI.
对比剂在大约 40%的所有磁共振成像(MRI)程序中使用,以根据试剂的分布和动态清除来提高图像质量。迄今为止,所有临床批准的对比剂都是 Gd(III)配位复合物,可缩短水的纵向(T)和横向(T)质子弛豫时间。最近人们对用生物相关的金属离子(如 Mn 或 Fe)替代 Gd 产生了兴趣,这导致人们对其配合物的水溶液配位化学产生了更大的兴趣。在本报告中,我们重点介绍了我们实验室最近报道的作为 MRI 对比剂或探针的高自旋 Fe(III)配合物。高度路易斯酸性的 Fe(III)中心在水溶液中有独特的配位化学,这为 MRI 探针的设计提供了替代策略。为了说明这一点,我们描述了不同类别的 Fe(III)MRI 探针,重点介绍了大环配合物和多核配合物,如自组装金属有机多面体(MOP)。我们最初的努力集中在 Fe(III)的大环配合物上,目的是通过调节自旋和氧化态来稳定还原生物环境中的高自旋 Fe(III)。我们的探针具有 1,4,7-三氮杂环壬烷的六配位 Fe(III)配合物,带有羟基丙基、膦酸酯或羧酸盐侧基,可产生质子 T 时间缩短的 Fe(III)配合物主要来自中性 pH 下的第二球或外球相互作用。具有五齿大环配体的类似物具有不易在外磁场时间尺度上快速交换的内球水,但这些配合物是有效的弛豫剂。该类别的 Fe(III)大环配合物可进行修饰以调节其在小鼠中的分布和药代动力学清除。这些研究的目标是使 Fe(III)试剂作为细胞外液试剂清除,并产生与 Gd 试剂相似的图谱。最后,对多聚 Fe(III)配合物的研究对于产生具有大质子弛豫率的探针很有意义。在这种方法中,两个 Fe(III)中心通过芳基连接体连接,如几个大环配合物所示。在 Fe(III)自组装笼中产生了更紧密连接的 Fe(III)中心,在 4.7T、37°C 下的血清白蛋白存在下,其弛豫率为 21mM s,与血清白蛋白紧密结合。该笼作为血池试剂增强了脉管系统的对比度,并在肿瘤中积累。最后,我们提出了对 Fe(III)配合物在 MRI 的各种应用中进一步发展的看法。