Suppr超能文献

结合表型分析和靶向 RNA-Seq 揭示了转录扰动与化学物质对细胞形态的影响之间的联系:以维甲酸为例。

Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: Retinoic acid as an example.

机构信息

Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN 37831, United States of America.

Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America.

出版信息

Toxicol Appl Pharmacol. 2022 Jun 1;444:116032. doi: 10.1016/j.taap.2022.116032. Epub 2022 Apr 26.

Abstract

The United States Environmental Protection Agency has proposed a tiered testing strategy for chemical hazard evaluation based on new approach methods (NAMs). The first tier includes in vitro profiling assays applicable to many (human) cell types, such as high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). The goals of this study were to: (1) harmonize the seeding density of U-2 OS human osteosarcoma cells for use in both assays; (2) compare HTTr- versus HTPP-derived potency estimates for 11 mechanistically diverse chemicals; (3) identify candidate reference chemicals for monitoring assay performance in future screens; and (4) characterize the transcriptional and phenotypic changes in detail for all-trans retinoic acid (ATRA) as a model compound known for its adverse effects on osteoblast differentiation. The results of this evaluation showed that (1) HTPP conducted at low (400 cells/well) and high (3000 cells/well) seeding densities yielded comparable potency estimates and similar phenotypic profiles for the tested chemicals; (2) HTPP and HTTr resulted in comparable potency estimates for changes in cellular morphology and gene expression, respectively; (3) three test chemicals (etoposide, ATRA, dexamethasone) produced concentration-dependent effects on cellular morphology and gene expression that were consistent with known modes-of-action, demonstrating their suitability for use as reference chemicals for monitoring assay performance; and (4) ATRA produced phenotypic changes that were highly similar to other retinoic acid receptor activators (AM580, arotinoid acid) and some retinoid X receptor activators (bexarotene, methoprene acid). This phenotype was observed concurrently with autoregulation of the RARB gene. Both effects were prevented by pre-treating U-2 OS cells with pharmacological antagonists of their respective receptors. Thus, the observed phenotype could be considered characteristic of retinoic acid pathway activation in U-2 OS cells. These findings lay the groundwork for combinatorial screening of chemicals using HTTr and HTPP to generate complementary information for the first tier of a NAM-based chemical hazard evaluation strategy.

摘要

美国环境保护署(EPA)提出了一种基于新方法(NAM)的化学危害评估分层测试策略。第一层次包括适用于许多(人类)细胞类型的体外分析方法,如高通量转录组学(HTTr)和高通量表型分析(HTPP)。本研究的目的是:(1)协调 U-2 OS 人骨肉瘤细胞在两种测定中的接种密度;(2)比较 11 种具有不同作用机制的化学物质的 HTTr-和 HTPP 衍生的效力估计值;(3)确定候选参考化学物质,用于监测未来筛选中的测定性能;(4)详细描述全反式视黄酸(ATRA)的转录和表型变化,作为一种已知对成骨细胞分化有不良影响的模型化合物。该评估的结果表明:(1)HTPP 在低(400 个细胞/孔)和高(3000 个细胞/孔)接种密度下进行时,可获得可比的效力估计值,并且对测试化学物质的表型图谱相似;(2)HTPP 和 HTTr 分别导致细胞形态和基因表达变化的可比效力估计值;(3)三种测试化学物质(依托泊苷、ATRA、地塞米松)对细胞形态和基因表达产生浓度依赖性影响,与已知的作用模式一致,表明它们适合用作监测测定性能的参考化学物质;(4)ATRA 产生的表型变化与其他视黄酸受体激动剂(AM580、阿罗汀酸)和一些视黄醇 X 受体激动剂(贝沙罗汀、美福酸)高度相似。这种表型与 RARB 基因的自身调节同时出现。两种作用均通过用各自受体的药理学拮抗剂预处理 U-2 OS 细胞而被阻止。因此,观察到的表型可被认为是 U-2 OS 细胞中视黄酸途径激活的特征。这些发现为使用 HTTr 和 HTPP 对化学物质进行组合筛选奠定了基础,为基于 NAM 的化学危害评估策略的第一层次生成互补信息。

相似文献

2
High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells.
Toxicol Appl Pharmacol. 2024 Oct;491:117073. doi: 10.1016/j.taap.2024.117073. Epub 2024 Aug 17.
3
Application of Cell Painting for chemical hazard evaluation in support of screening-level chemical assessments.
Toxicol Appl Pharmacol. 2023 Jun 1;468:116513. doi: 10.1016/j.taap.2023.116513. Epub 2023 Apr 11.
5
Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling.
Toxicol Appl Pharmacol. 2020 Jan 15;389:114876. doi: 10.1016/j.taap.2019.114876. Epub 2019 Dec 30.
6
High-Throughput Transcriptomics Platform for Screening Environmental Chemicals.
Toxicol Sci. 2021 Apr 27;181(1):68-89. doi: 10.1093/toxsci/kfab009.
7

引用本文的文献

3
Drug-induced cytotoxicity prediction in muscle cells, an application of the Cell Painting assay.
PLoS One. 2025 Mar 31;20(3):e0320040. doi: 10.1371/journal.pone.0320040. eCollection 2025.
5
Cell Painting for cytotoxicity and mode-of-action analysis in primary human hepatocytes.
bioRxiv. 2025 Jan 24:2025.01.22.634152. doi: 10.1101/2025.01.22.634152.
6
Cell Painting: a decade of discovery and innovation in cellular imaging.
Nat Methods. 2025 Feb;22(2):254-268. doi: 10.1038/s41592-024-02528-8. Epub 2024 Dec 5.
7
Progress in toxicogenomics to protect human health.
Nat Rev Genet. 2025 Feb;26(2):105-122. doi: 10.1038/s41576-024-00767-1. Epub 2024 Sep 2.
8
High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells.
Toxicol Appl Pharmacol. 2024 Oct;491:117073. doi: 10.1016/j.taap.2024.117073. Epub 2024 Aug 17.
9
Unleashing the potential of cell painting assays for compound activities and hazards prediction.
Front Toxicol. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036. eCollection 2024.
10
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.
bioRxiv. 2024 May 7:2024.05.04.592531. doi: 10.1101/2024.05.04.592531.

本文引用的文献

1
Predicting compound activity from phenotypic profiles and chemical structures.
Nat Commun. 2023 Apr 8;14(1):1967. doi: 10.1038/s41467-023-37570-1.
2
tcplfit2: an R-language general purpose concentration-response modeling package.
Bioinformatics. 2022 Jan 27;38(4):1157-1158. doi: 10.1093/bioinformatics/btab779.
4
High-Throughput Transcriptomics Platform for Screening Environmental Chemicals.
Toxicol Sci. 2021 Apr 27;181(1):68-89. doi: 10.1093/toxsci/kfab009.
5
Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data.
SLAS Discov. 2021 Feb;26(2):292-308. doi: 10.1177/2472555220950245. Epub 2020 Aug 29.
6
Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay.
SLAS Discov. 2020 Aug;25(7):755-769. doi: 10.1177/2472555220928004. Epub 2020 Jun 17.
7
Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling.
Toxicol Appl Pharmacol. 2020 Jan 15;389:114876. doi: 10.1016/j.taap.2019.114876. Epub 2019 Dec 30.
9
Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nat Biotechnol. 2019 Aug;37(8):907-915. doi: 10.1038/s41587-019-0201-4. Epub 2019 Aug 2.
10
Retinoic acid signaling pathways.
Development. 2019 Jul 4;146(13):dev167502. doi: 10.1242/dev.167502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验