Suppr超能文献

释放细胞绘画分析在化合物活性和危害预测方面的潜力。

Unleashing the potential of cell painting assays for compound activities and hazards prediction.

作者信息

Odje Floriane, Meijer David, von Coburg Elena, van der Hooft Justin J J, Dunst Sebastian, Medema Marnix H, Volkamer Andrea

机构信息

Data Driven Drug Design, Center for Bioinformatics, Saarland University, Saarbrücken, Germany.

Bioinformatics Group, Wageningen University, Wageningen, Netherlands.

出版信息

Front Toxicol. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036. eCollection 2024.

Abstract

The cell painting (CP) assay has emerged as a potent imaging-based high-throughput phenotypic profiling (HTPP) tool that provides comprehensive input data for prediction of compound activities and potential hazards in drug discovery and toxicology. CP enables the rapid, multiplexed investigation of various molecular mechanisms for thousands of compounds at the single-cell level. The resulting large volumes of image data provide great opportunities but also pose challenges to image and data analysis routines as well as property prediction models. This review addresses the integration of CP-based phenotypic data together with or in substitute of structural information from compounds into machine (ML) and deep learning (DL) models to predict compound activities for various human-relevant disease endpoints and to identify the underlying modes-of-action (MoA) while avoiding unnecessary animal testing. The successful application of CP in combination with powerful ML/DL models promises further advances in understanding compound responses of cells guiding therapeutic development and risk assessment. Therefore, this review highlights the importance of unlocking the potential of CP assays when combined with molecular fingerprints for compound evaluation and discusses the current challenges that are associated with this approach.

摘要

细胞绘画(CP)分析已成为一种强大的基于成像的高通量表型分析(HTPP)工具,可为药物发现和毒理学中化合物活性和潜在危害的预测提供全面的输入数据。CP能够在单细胞水平上对数千种化合物的各种分子机制进行快速、多重研究。由此产生的大量图像数据既提供了巨大的机会,也给图像和数据分析程序以及性质预测模型带来了挑战。本综述探讨了将基于CP的表型数据与化合物的结构信息一起或替代化合物的结构信息整合到机器学习(ML)和深度学习(DL)模型中,以预测各种与人类相关疾病终点的化合物活性,并确定潜在的作用模式(MoA),同时避免不必要的动物试验。CP与强大的ML/DL模型相结合的成功应用有望在理解指导治疗开发和风险评估的细胞化合物反应方面取得进一步进展。因此,本综述强调了在结合分子指纹进行化合物评估时释放CP分析潜力的重要性,并讨论了与该方法相关的当前挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa01/11288911/e4921d67acdf/ftox-06-1401036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验