Suppr超能文献

通过三维体相的可逆氢化作用获得的拓扑表面电流。

Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk.

作者信息

Deng Haiming, Zhao Lukas, Park Kyungwha, Yan Jiaqiang, Sobczak Kamil, Lakra Ayesha, Buzi Entela, Krusin-Elbaum Lia

机构信息

Department of Physics, The City College of New York - CUNY, New York, NY, 10031, United States.

Department of Physics, Virginia Tech, Blacksburg, VA, 24061, United States.

出版信息

Nat Commun. 2022 Apr 28;13(1):2308. doi: 10.1038/s41467-022-29957-3.

Abstract

Hydrogen, the smallest and most abundant element in nature, can be efficiently incorporated within a solid and drastically modify its electronic and structural state. In most semiconductors interstitial hydrogen binds to defects and is known to be amphoteric, namely it can act either as a donor (H) or an acceptor (H) of charge, nearly always counteracting the prevailing conductivity type. Here we demonstrate that hydrogenation resolves an outstanding challenge in chalcogenide classes of three-dimensional (3D) topological insulators and magnets - the control of intrinsic bulk conduction that denies access to quantum surface transport, imposing severe thickness limits on the bulk. With electrons donated by a reversible binding of H ions to Te(Se) chalcogens, carrier densities are reduced by over 10cm, allowing tuning the Fermi level into the bulk bandgap to enter surface/edge current channels without altering carrier mobility or the bandstructure. The hydrogen-tuned topological nanostructures are stable at room temperature and tunable disregarding bulk size, opening a breadth of device platforms for harnessing emergent topological states.

摘要

氢是自然界中最小且最丰富的元素,它能够有效地融入固体中,并极大地改变其电子和结构状态。在大多数半导体中,间隙氢与缺陷结合,已知具有两性,即它既可以作为电荷的施主(H),也可以作为受主(H),几乎总是抵消主导的导电类型。在此,我们证明氢化解决了三维(3D)拓扑绝缘体和磁体的硫族化物类别中一个突出的挑战——控制本征体传导,而本征体传导会阻碍量子表面输运,对体材料施加严格的厚度限制。通过H离子与Te(Se)硫族元素的可逆结合所提供的电子,载流子密度降低超过10cm,从而能够将费米能级调节到体能带隙中,以进入表面/边缘电流通道,而不会改变载流子迁移率或能带结构。经氢调谐的拓扑纳米结构在室温下稳定,且与体材料尺寸无关可进行调谐,为利用新兴拓扑态开辟了广泛的器件平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/511e/9050701/68acb0d1d51d/41467_2022_29957_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验