Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland.
Department for In Vitro Toxicology and Biomedicine Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany.
Toxicol Sci. 2022 Jun 28;188(1):17-33. doi: 10.1093/toxsci/kfac046.
Current animal-free methods to assess teratogenicity of drugs under development still deliver high numbers of false negatives. To improve the sensitivity of human teratogenicity prediction, we characterized the TeraTox test, a newly developed multilineage differentiation assay using 3D human-induced pluripotent stem cells. TeraTox produces primary output concentration-dependent cytotoxicity and altered gene expression induced by each test compound. These data are fed into an interpretable machine-learning model to perform prediction, which relates to the concentration-dependent human teratogenicity potential of drug candidates. We applied TeraTox to profile 33 approved pharmaceuticals and 12 proprietary drug candidates with known in vivo data. Comparing TeraTox predictions with known human or animal toxicity, we report an accuracy of 69% (specificity: 53%, sensitivity: 79%). TeraTox performed better than 2 quantitative structure-activity relationship models and had a higher sensitivity than the murine embryonic stem cell test (accuracy: 58%, specificity: 76%, and sensitivity: 46%) run in the same laboratory. The overall prediction accuracy could be further improved by combining TeraTox and mouse embryonic stem cell test results. Furthermore, patterns of altered gene expression revealed by TeraTox may help grouping toxicologically similar compounds and possibly deducing common modes of action. The TeraTox assay and the dataset described here therefore represent a new tool and a valuable resource for drug teratogenicity assessment.
当前用于评估开发中药物致畸性的无动物方法仍然会产生大量的假阴性结果。为了提高人类致畸性预测的灵敏度,我们对 TeraTox 测试进行了特征描述,这是一种使用 3D 人诱导多能干细胞的新开发的多谱系分化测定法。TeraTox 产生与测试化合物浓度相关的原发性输出依赖性细胞毒性和改变的基因表达。这些数据被输入到可解释的机器学习模型中进行预测,该模型与候选药物的浓度依赖性人类致畸性潜力相关。我们应用 TeraTox 对 33 种已批准的药物和 12 种具有已知体内数据的专有候选药物进行了分析。将 TeraTox 的预测与已知的人类或动物毒性进行比较,我们报告的准确性为 69%(特异性:53%,敏感性:79%)。TeraTox 的性能优于 2 种定量构效关系模型,并且比在同一实验室进行的小鼠胚胎干细胞测试(准确性:58%,特异性:76%,敏感性:46%)具有更高的灵敏度。通过组合 TeraTox 和小鼠胚胎干细胞测试结果,可以进一步提高总体预测准确性。此外,TeraTox 揭示的改变基因表达模式可能有助于对具有相似毒性的化合物进行分组,并可能推断出共同的作用模式。因此,TeraTox 测定法和这里描述的数据集代表了用于药物致畸性评估的新工具和有价值的资源。