Suppr超能文献

利用随机引物进行5'端单细胞RNA测序的全转录组分析

Complete Transcriptome Analysis by 5'-End Single-Cell RNA-Seq with Random Priming.

作者信息

Kouno Tsukasa, Carninci Piero, Shin Jay W

机构信息

RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

出版信息

Methods Mol Biol. 2022;2490:141-156. doi: 10.1007/978-1-0716-2281-0_11.

Abstract

Single-cell transcriptome analysis reveals heterogeneous cell types in complex tissues and leads to unexpected biological findings when compared to bulk populations. However most of the methods focus on the 3'-end of polyadenylated transcripts using droplet-based technology. To achieve complete transcriptome, we describe single-cell 5'-end transcriptome protocol with random primed-cDNA harvesting on the Fluidigm C1™ platform which can isolate and process up to 96 cells from a single run with custom library preparation. The method enables detection of Transcription Start Site (TSS) at the single-cell resolution yielding a more comprehensive overview of gene regulatory elements governing in the EpiSC-like cell (EpiLC) including non-polyadenylated RNA and enhancer RNA activities.

摘要

单细胞转录组分析揭示了复杂组织中细胞类型的异质性,与大量细胞群体相比,还能带来意想不到的生物学发现。然而,大多数方法使用基于微滴的技术聚焦于多聚腺苷酸化转录本的3'端。为了实现完整的转录组分析,我们描述了一种单细胞5'端转录组方案,该方案在Fluidigm C1™平台上通过随机引物cDNA捕获技术,单次运行可分离并处理多达96个细胞,并进行定制文库制备。该方法能够在单细胞分辨率下检测转录起始位点(TSS),从而更全面地概述调控类上胚层干细胞(EpiLC)中基因的调控元件,包括非多聚腺苷酸化RNA和增强子RNA的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验