Suppr超能文献

基于双层犹豫模糊语言信息的可持续供应商个性化排序框架。

Double hierarchy hesitant fuzzy linguistic information based framework for personalized ranking of sustainable suppliers.

机构信息

Department of Computer Science and Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, TN, India.

Department of Logistics, Military Academy University of Defence in Belgrade, Belgrade, 11000, Serbia.

出版信息

Environ Sci Pollut Res Int. 2022 Sep;29(43):65371-65390. doi: 10.1007/s11356-022-20359-y. Epub 2022 Apr 29.

Abstract

With the growing appetite for reducing carbon footprint, organizations are tirelessly working towards green practices and one such crucial practice is purchasing raw materials from sustainable suppliers (SSs). Inspired by the drift in purchase habits, several sustainable suppliers emerged in the market and a rational selection of a suitable sustainable supplier is a complex decision problem. There are many criteria associated with the evaluation of sustainable suppliers, and double hierarchy hesitant fuzzy linguistic (DHHFL) structure is a popular preference style that accepts complex linguistic expressions in the natural language form. Earlier studies on sustainable supplier selection infer that (i) complex linguistic expressions are not properly modeled, (ii) interrelationship among criteria must be considered during importance assessment, (iii) direct assignment of attitudinal values of experts causes bias and subjectivity, and (iv) nature of criteria play a crucial role in ranking SSs. To overcome these limitations, a novel MCMD framework is proposed in this study in which the attitudinal characteristic values of experts are calculated by using a variance approach. Besides, importance of diverse sustainable criteria is calculated by proposing novel attitude-CRITIC approach that supports proper capturing of interrelationship among criteria along with experts' attitude values. Later, weighted distance approximation algorithm is presented to DHHFL setting for personalized and cumulative ranking of SSs by properly considering nature of criteria. These methods are integrated to form a framework under DHHFL setting, and its usefulness is exemplified by using a case study of SS selection in an automotive firm. A comprehensive sensitivity analysis as well performed to test the validity of the proposed model approves the applicability, validity, and robustness of the model. Lastly, comparison is done with other methods to understand the merits and shortcomings of the proposal.

摘要

随着减少碳足迹的需求不断增长,各组织正在不懈地努力推行绿色实践,而从可持续供应商(SS)采购原材料是其中一项重要实践。受购买习惯变化的启发,市场上涌现出了几家可持续供应商,而合理选择合适的可持续供应商是一个复杂的决策问题。评估可持续供应商有许多标准,而双层犹豫模糊语言(DHHFL)结构是一种流行的偏好形式,它以自然语言形式接受复杂的语言表达。先前关于可持续供应商选择的研究表明:(i)复杂的语言表达没有得到妥善建模;(ii)在重要性评估过程中必须考虑标准之间的相互关系;(iii)专家态度值的直接赋值会导致偏见和主观性;(iv)标准的性质在 SS 排名中起着关键作用。为了克服这些限制,本研究提出了一种新的 MCMD 框架,其中使用方差方法计算专家的态度特征值。此外,通过提出新的态度-CRITIC 方法来计算不同可持续标准的重要性,该方法支持适当捕捉标准之间以及专家态度值之间的相互关系。之后,提出了加权距离逼近算法来处理 DHHFL 设定,以通过适当考虑标准的性质来对 SS 进行个性化和累积排名。这些方法集成在 DHHFL 设定下形成一个框架,并通过在汽车公司的 SS 选择案例研究中加以说明,证明了该框架的有效性。进行了全面的敏感性分析来检验模型的有效性,证明了模型的适用性、有效性和稳健性。最后,与其他方法进行了比较,以了解该提案的优点和缺点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验