Suppr超能文献

纳米颗粒尺寸和表面化学对类肽自组装的影响。

Impact of Nanoparticle Size and Surface Chemistry on Peptoid Self-Assembly.

作者信息

Monahan Madison, Homer Micaela, Zhang Shuai, Zheng Renyu, Chen Chun-Long, De Yoreo James, Cossairt Brandi M

机构信息

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States.

Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-1700, United States.

出版信息

ACS Nano. 2022 May 24;16(5):8095-8106. doi: 10.1021/acsnano.2c01203. Epub 2022 Apr 29.

Abstract

Self-assembled organic nanomaterials can be generated by bottom-up assembly pathways where the structure is controlled by the organic sequence and altered using pH, temperature, and solvation. In contrast, self-assembled structures based on inorganic nanoparticles typically rely on physical packing and drying effects to achieve uniform superlattices. By combining these two chemistries to access inorganic-organic nanostructures, we aim to understand the key factors that govern the assembly pathway and structural outcomes in hybrid systems. In this work, we outline two assembly regimes between quantum dots (QDs) and reversibly binding peptoids. These regimes can be accessed by changing the solubility and size of the hybrid (peptoid-QD) monomer unit. The hybrid monomers are prepared via ligand exchange and assembled, and the resulting assemblies are studied using ex-situ transmission electron microscopy as a function of assembly time. In aqueous conditions, QDs were found to stabilize certain morphologies of peptoid intermediates and generate a final product consisting of multilayers of small peptoid sheets linked by QDs. The QDs were also seen to facilitate or inhibit assembly in organic solvents based on the relative hydrophobicity of the surface ligands, which ultimately dictated the solubility of the hybrid monomer unit. Increasing the size of the QDs led to large hybrid sheets with regions of highly ordered square-packed QDs. A second, smaller QD species can also be integrated to create binary hybrid lattices. These results create a set of design principles for controlling the structure and structural evolution of hybrid peptoid-QD assemblies and contribute to the predictive synthesis of complex hybrid matter.

摘要

自组装有机纳米材料可通过自下而上的组装途径生成,其结构由有机序列控制,并可通过pH值、温度和溶剂化作用进行改变。相比之下,基于无机纳米粒子的自组装结构通常依靠物理堆积和干燥效应来实现均匀的超晶格。通过结合这两种化学方法来制备无机-有机纳米结构,我们旨在了解控制混合体系中组装途径和结构结果的关键因素。在这项工作中,我们概述了量子点(QD)与可逆结合类肽之间的两种组装机制。通过改变混合(类肽-QD)单体单元的溶解度和尺寸,可以实现这些机制。混合单体通过配体交换制备并进行组装,使用非原位透射电子显微镜研究所得组装体随组装时间的变化。在水性条件下,发现量子点可稳定类肽中间体的某些形态,并生成由量子点连接的小类肽片多层组成的最终产物。基于表面配体的相对疏水性,量子点在有机溶剂中也被观察到促进或抑制组装,这最终决定了混合单体单元的溶解度。增大量子点的尺寸会导致形成具有高度有序方形堆积量子点区域的大混合片。第二种较小的量子点物种也可以整合以创建二元混合晶格。这些结果为控制混合类肽-量子点组装体的结构和结构演化创造了一套设计原则,并有助于复杂混合物质的预测合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验