Zhou Yihao, Dong Jinyi, Wang Xiaoyao, Song Zeyu, Lu Qiuhao, Jiang Jiang, Wang Qiangbin
CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
JACS Au. 2025 Apr 25;5(5):2350-2358. doi: 10.1021/jacsau.5c00380. eCollection 2025 May 26.
The geometric nature of anisotropic nanoparticles (NPs) gives rise to directional variations in their physicochemical properties, making the characteristics of their assemblies highly tunable by manipulating their three-dimensional (3D) spatial configurations. Surface modification with DNA ligands, which creates molecular recognition between NPs, offers a practical approach for self-assembling NPs into customized nanostructures with emergent collective properties. However, the regioselective modification of DNA ligands on the complex 3D surface of anisotropic NPs to create specific and directional bonds remains challenging. Here, taking gold nanorods (AuNRs) as representative anisotropic NPs, we develop a DNA ligand encoding strategy that chemically transfers the two-dimensional (2D) DNA patterns from DNA origami templates onto the 3D curved surface of AuNRs, programming their valence and orientation for self-assembly. A semiflexible DNA origami template is designed to wrap around the AuNR to ensure that customized DNA ligands are addressed to predetermined positions. These DNA ligands facilitate specific linkages between AuNRs and gold nanospheres (AuNSs), enabling the construction of various stereocontrolled AuNR-AuNS nanostructures. By regulating the arrangement shape of DNA ligands and combining sequence-orthogonal DNA ligands, we further demonstrate precise control over the orientation of individual AuNRs, allowing the assembly of AuNR structures with tunable optical chirality. This approach provides a versatile strategy for assembling anisotropic NPs into desired 3D structures in a scaffold-free manner, which advances the construction of promising nanodevices for photonic, information, and biomedical applications.
各向异性纳米颗粒(NPs)的几何性质导致其物理化学性质产生方向变化,使得通过操纵其三维(3D)空间构型,其组装体的特性具有高度可调性。用DNA配体进行表面修饰可在纳米颗粒之间产生分子识别,为将纳米颗粒自组装成具有新兴集体性质的定制纳米结构提供了一种实用方法。然而,在各向异性纳米颗粒复杂的3D表面上对DNA配体进行区域选择性修饰以形成特定的定向键仍然具有挑战性。在此,以金纳米棒(AuNRs)作为代表性的各向异性纳米颗粒,我们开发了一种DNA配体编码策略,该策略将二维(2D)DNA图案从DNA折纸模板化学转移到AuNRs的3D曲面上,对其价态和自组装方向进行编程。设计了一种半柔性DNA折纸模板来包裹AuNR,以确保定制的DNA配体定位到预定位置。这些DNA配体促进了AuNRs与金纳米球(AuNSs)之间的特定连接,从而能够构建各种立体可控的AuNR-AuNS纳米结构。通过调节DNA配体的排列形状并结合序列正交的DNA配体,我们进一步证明了对单个AuNRs方向的精确控制,从而能够组装具有可调光学手性的AuNR结构。这种方法提供了一种通用策略,可将各向异性纳米颗粒以无支架的方式组装成所需的3D结构,推动了用于光子、信息和生物医学应用的有前景的纳米器件的构建。