Suppr超能文献

带磁 Maxwell 纳米流体在收缩倾斜表面流动的 Soret-Dufour 模型的流动、热和传质特性。

The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface.

机构信息

Institute for Mathematical Research, Universiti Putra Malaysia, Selangor, Malaysia.

Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Selangor, Malaysia.

出版信息

PLoS One. 2022 Apr 29;17(4):e0267148. doi: 10.1371/journal.pone.0267148. eCollection 2022.

Abstract

A mathematical model of 2D-double diffusive layer flow model of boundary in MHD Maxwell fluid created by a sloping slope surface is constructed in this paper. The numerical findings of non-Newtonian fluid are important to the chemical processing industry, mining industry, plastics processing industry, as well as lubrication and biomedical flows. The diversity of regulatory parameters like buoyancy rate, magnetic field, mixed convection, absorption, Brownian motion, thermophoretic diffusion, Deborah number, Lewis number, Prandtl number, Soret number, as well as Dufour number contributes significant impact on the current model. The steps of research methodology are as followed: a) conversion from a separate matrix (PDE) to standard divisive calculations (ODEs), b) Final ODEs are solved in bvp4c program, which developed in MATLAB software, c) The stability analysis part also being developed in bvp4c program, to select the most effective solution in the real liquid state. Lastly, the numerical findings are built on a system of tables and diagrams. As a result, the profiles of velocity, temperature, and concentration are depicted due to the regulatory parameters, as mentioned above. In addition, the characteristics of the local Nusselt, coefficient of skin-friction as well as Sherwood numbers on the Maxwell fluid are described in detail.

摘要

本文构建了一个由倾斜倾斜表面产生的 MHD Maxwell 流体二维双扩散层流模型的数学模型。非牛顿流体的数值研究结果对化学加工工业、采矿业、塑料加工工业以及润滑和生物医学流动都很重要。像浮力率、磁场、混合对流、吸收、布朗运动、热泳扩散、 Deborah 数、Lewis 数、Prandtl 数、Soret 数以及 Dufour 数等调节参数的多样性对当前模型产生了重大影响。研究方法的步骤如下:a)将矩阵(PDE)转换为标准划分计算(ODE),b)在 MATLAB 软件中开发的 bvp4c 程序中求解最终的 ODEs,c)在 bvp4c 程序中开发稳定性分析部分,以在真实液体状态下选择最有效的解决方案。最后,数值研究结果以表格和图表的形式呈现。结果,由于上述调节参数,描绘了速度、温度和浓度的分布。此外,详细描述了 Maxwell 流体上局部努塞尔数、表皮摩擦系数和 Sherwood 数的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c291/9053785/b3b3f0e1d0d9/pone.0267148.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验