Department of Chemistry, Bilkent University, 06800 Ankara, Turkey.
Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510 Ankara, Turkey.
J Am Chem Soc. 2022 May 18;144(19):8848-8860. doi: 10.1021/jacs.2c03088. Epub 2022 Apr 29.
Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/AlO (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur.
对于开发具有延长使用寿命的高性能多相催化剂而言,对金属/金属氧化物界面上发生的催化失活现象(如硫中毒)的基本理解至关重要。明确识别催化中毒物质需要实验方法,该方法同时提供关于吸附物的吸附位点和吸附几何形状的准确信息,具有纳米级空间分辨率,以及它们的详细化学结构和表面官能团。然而,迄今为止,如果不牺牲化学定义,就不可能在纳米尺度上研究金属/金属氧化物界面的催化硫中毒。在这里,我们证明了近场纳米红外光谱可以有效地识别 Pd(nanodisk)/AlO(薄膜)平面模型催化剂表面上基于硫的催化毒物的化学性质、吸附位点和吸附几何形状。目前的结果表明,硫酸盐物种的性质在一个纳米粒子到另一个纳米粒子之间存在显著差异,单个 Pd 纳米粒子上的硫中毒以及活性金属-金属氧化物支撑界面位点上的硫酸盐物种的大量变化。这些发现提供了对于开发对硫失活具有抗性的长寿命贵金属催化剂至关重要的关键分子水平见解。