State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China.
Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China.
Science. 2021 Jan 29;371(6528):517-521. doi: 10.1126/science.abe3558.
The interface between metal catalyst and support plays a critical role in heterogeneous catalysis. An epitaxial interface is generally considered to be rigid, and tuning its intrinsic microstructure with atomic precision during catalytic reactions is challenging. Using aberration-corrected environmental transmission electron microscopy, we studied the interface between gold (Au) and a titanium dioxide (TiO) support. Direct atomic-scale observations showed an unexpected dependence of the atomic structure of the Au-TiO interface with the epitaxial rotation of gold nanoparticles on a TiO surface during carbon monoxide (CO) oxidation. Taking advantage of the reversible and controllable rotation, we achieved in situ manipulation of the active Au-TiO interface by changing gas and temperature. This result suggests that real-time design of the catalytic interface in operating conditions may be possible.
金属催化剂与载体之间的界面在多相催化中起着关键作用。外延界面通常被认为是刚性的,在催化反应中通过原子精度来调整其本征微观结构具有挑战性。本研究使用校正像差的环境透射电子显微镜,研究了金(Au)和二氧化钛(TiO)载体之间的界面。直接原子尺度的观察结果表明,在一氧化碳(CO)氧化过程中,金纳米颗粒在 TiO 表面上的外延旋转对 Au-TiO 界面的原子结构具有出人意料的依赖性。利用这种可逆且可控的旋转,我们通过改变气体和温度实现了活性 Au-TiO 界面的原位操控。该结果表明,在操作条件下对催化界面进行实时设计是可能的。