Suppr超能文献

贝叶斯序贯数据同化在 COVID-19 预测中的应用。

Bayesian sequential data assimilation for COVID-19 forecasting.

机构信息

Centro de Investigación en Matemáticas, CIMAT, Guanajuato, Mexico; Department of Public Health Sciences, University of California Davis, CA, United States.

Centro de Investigación en Matemáticas, CIMAT, Guanajuato, Mexico.

出版信息

Epidemics. 2022 Jun;39:100564. doi: 10.1016/j.epidem.2022.100564. Epub 2022 Apr 22.

Abstract

We introduce a Bayesian sequential data assimilation and forecasting method for non-autonomous dynamical systems. We applied this method to the current COVID-19 pandemic. It is assumed that suitable transmission, epidemic and observation models are available and previously validated. The transmission and epidemic models are coded into a dynamical system. The observation model depends on the dynamical system state variables and parameters, and is cast as a likelihood function. The forecast is sequentially updated over a sliding window of epidemic records as new data becomes available. Prior distributions for the state variables at the new forecasting time are assembled using the dynamical system, calibrated for the previous forecast. Epidemic outbreaks are non-autonomous dynamical systems depending on human behavior, viral evolution and climate, among other factors, rendering it impossible to make reliable long-term epidemic forecasts. We show our forecasting method's performance using a SEIR type model and COVID-19 data from several Mexican localities. Moreover, we derive further insights into the COVID-19 pandemic from our model predictions. The rationale of our approach is that sequential data assimilation is an adequate compromise between data fitting and dynamical system prediction.

摘要

我们介绍了一种用于非自治动力系统的贝叶斯序贯数据同化和预测方法。我们将该方法应用于当前的 COVID-19 大流行。假设存在合适的传播、流行和观测模型,并且已经进行了验证。将传输和流行模型编码为动力系统。观测模型取决于动力系统状态变量和参数,并表示为似然函数。随着新数据的出现,预测会在流行病记录的滑动窗口中进行序贯更新。使用动力学系统为新的预测时间组装状态变量的先验分布,并针对先前的预测进行校准。流行病爆发是依赖于人类行为、病毒进化和气候等因素的非自治动力系统,因此无法进行可靠的长期流行病预测。我们使用 SEIR 型模型和来自墨西哥几个地方的 COVID-19 数据展示了我们的预测方法的性能。此外,我们还从模型预测中得出了对 COVID-19 大流行的进一步了解。我们方法的基本原理是,序贯数据同化是数据拟合和动力系统预测之间的一个适当折衷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验