Suppr超能文献

基于随机 SEIR 传染病模型的区域 COVID-19 动力学的序贯数据同化。

Sequential Data Assimilation of the Stochastic SEIR Epidemic Model for Regional COVID-19 Dynamics.

机构信息

Department of Psychology, University of Potsdam, Potsdam, Germany.

Division of Training and Movement Sciences, University of Potsdam, Potsdam, Germany.

出版信息

Bull Math Biol. 2020 Dec 8;83(1):1. doi: 10.1007/s11538-020-00834-8.

Abstract

Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach.

摘要

新出现的大流行病(如 COVID-19)需要预测模型来精确调整响应,以限制其对社会的深远影响。标准的传染病模型为疾病发病率提供了理论上合理的动力学描述。对于传染性在症状出现之前和出现时达到峰值的 COVID-19,SEIR 模型解释了暴露个体的隐藏积累,这给控制策略带来了挑战。然而,空间异质性引发了对在整个国家层面上对传染病爆发进行建模的充分性的质疑。在这里,我们表明,通过将序贯数据同化应用于随机 SEIR 传染病模型,我们可以捕捉到区域层面上爆发的动态行为。具有相对较少感染人数和人口统计学噪声的区域建模考虑了空间异质性和随机性。基于适应性模型,可以实现短期预测。因此,借助这些序贯数据同化方法,可以实现更现实的传染病模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b012/7723948/de8c561de528/11538_2020_834_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验