Centro de Investigación en Matemáticas, CIMAT, Guanajuato, Guanajuato, Mexico.
Instituto de Matemáticas, UNAM, Circuito Exterior, CU, CDMX, Mexico.
PLoS One. 2021 Jan 22;16(1):e0245669. doi: 10.1371/journal.pone.0245669. eCollection 2021.
We present a forecasting model aim to predict hospital occupancy in metropolitan areas during the current COVID-19 pandemic. Our SEIRD type model features asymptomatic and symptomatic infections with detailed hospital dynamics. We model explicitly branching probabilities and non-exponential residence times in each latent and infected compartments. Using both hospital admittance confirmed cases and deaths, we infer the contact rate and the initial conditions of the dynamical system, considering breakpoints to model lockdown interventions and the increase in effective population size due to lockdown relaxation. The latter features let us model lockdown-induced 2nd waves. Our Bayesian approach allows us to produce timely probabilistic forecasts of hospital demand. We have applied the model to analyze more than 70 metropolitan areas and 32 states in Mexico.
我们提出了一个预测模型,旨在预测当前 COVID-19 大流行期间大都市地区的医院入住率。我们的 SEIRD 型模型具有无症状和有症状感染,并具有详细的医院动态。我们明确地对每个潜在和感染的隔室中的分支概率和非指数居留时间进行建模。我们使用医院入院确诊病例和死亡病例来推断接触率和动力系统的初始条件,考虑到断点来对封锁干预措施和由于封锁放松而导致的有效人口规模的增加进行建模。后一特征使我们能够对医院需求进行及时的概率预测。我们已经将该模型应用于分析墨西哥 70 多个大都市区和 32 个州。