Wei L J, Hou Q, Yao N N, Liang Y, Cao X, Sun B C, Li H W, Liu J T, Xu S M, Cao Jianzhong
Department of Radiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030010, China.
Department of CT, the Shanxi Children's Hospital, Taiyuan 030013, China.
Zhonghua Yi Xue Za Zhi. 2022 May 10;102(17):1283-1289. doi: 10.3760/cma.j.cn112137-20211106-02467.
To construct a novel prognostic nomogram model based on more comprehensive variables for patients with small-cell lung cancer (SCLC). The data of 722 patients with SCLC confirmed by pathology in Affiliated Cancer Hospital of Shanxi Medical University from January 2015 to December 2018 were retrospectively analyzed [including 592 males and 130 females, aged from 23 to 82(61±9) years]. A random seed count of 133 was used to divide those patients into training set (=422) and validation set (=300). Kaplan-Meier was used for survival curves analysis and univariate Log-rank test was used for evaluating the influence of clinical variables on the prognosis of sclc, variables with <0.05 in univariate analysis were included in a multivariate Cox regression model. The nomogram was constructed based on the variables which <0.05 in multivariate analysis. Receiver operating characteristic (ROC) curve, calibration by Integrated Brier score (IBS) and clinical net benefit by decision curve analysis (DCA) were used to evaluate model discriminative power, prediction error value, and clinical net benefit, and compared with the American Joint Committee on Cancer 8 TNM. Male, abnormal monocyte (MON) counts, abnormal neuron specific enolase (NSE), abnormal cytokeratin 19 fragment (Cyfra211), M1a stage, M1b stage, M1c stage, radiotherapy (RT), chemotherapy ≥4 cycles and prophylactic cranial irradiation (PCI) were prognostic factors for SCLC[(95%)=1.39(1.00-1.92), 1.29(1.02-1.63), 1.41(1.11-1.80), 2.02(1.48-2.76), 1.09(0.77-1.55), 1.44(0.94-2.22), 2.01(1.49-2.71), 0.75(0.57-0.98), 0.40(0.31-0.51)and 0.42(0.26-0.68), respectively, all <0.05]. The area under ROC curve (AUC) of the nomogram in training set and validation set were 0.814(95%: 0.765-0.862)and 0.787 (95%: 0.725-0.849), which were higher than TNM [0.616(95%: 0.558-0.674) and 0.648(95%: 0.581-0.715)].The calibration curve showed a good correlation between the nomogram prediction and actual observation for the 2-year overall survival (OS). IBS indicted a lower prediction error rate (training set: 0.132 vs 0.169; validation set: 0.138 vs 0.169). DCA showed a wider threshold range than TNM (training set: 0.01-0.96 vs 0.01-0.85, validation set: 0.01-0.94 vs 0.01-0.86) and a greater improvement of the clinical net benefit (in training set the nomogram had a greater clinical benefit than TNM in the range of 0.19-0.96, and remained in validation set in the range of 0.19-0.94). The established nomogram model for predicting 2-year OS in patients with SCLC based on 8 variables, including gender, MON, NSE, Cyfra211, M stage, RT, CT cycles and PCI can be used for an more accurately prognosis prediction and reference for therapeutic regimen selection.
基于更全面的变量构建小细胞肺癌(SCLC)患者的新型预后列线图模型。回顾性分析2015年1月至2018年12月在山西医科大学附属肿瘤医院经病理确诊的722例SCLC患者的数据[包括592例男性和130例女性,年龄23至82(61±9)岁]。使用随机种子数133将这些患者分为训练集(=422)和验证集(=300)。采用Kaplan-Meier法进行生存曲线分析,单因素Log-rank检验评估临床变量对SCLC预后的影响,单因素分析中P<0.05的变量纳入多因素Cox回归模型。基于多因素分析中P<0.05的变量构建列线图。采用受试者操作特征(ROC)曲线、综合Brier评分(IBS)校准和决策曲线分析(DCA)评估临床净效益,以评估模型的判别力、预测误差值和临床净效益,并与美国癌症联合委员会第8版TNM进行比较。男性、单核细胞(MON)计数异常、神经元特异性烯醇化酶(NSE)异常、细胞角蛋白19片段(Cyfra211)异常、M1a期、M1b期、M1c期、放疗(RT)、化疗≥4周期和预防性颅脑照射(PCI)是SCLC的预后因素[(95%CI)分别为1.39(1.00-1.92)、1.29(1.02-1.63)、1.41(1.11-1.80)、2.02(1.48-2.76)、1.09(0.77-1.55)、1.44(0.94-2.22)、2.01(1.49-2.71)、0.75(0.57-0.98)和0.40(0.31-0.51)以及0.42(0.26-0.68),均P<0.05]。训练集和验证集中列线图的ROC曲线下面积(AUC)分别为0.814(95%CI:0.765-0.862)和0.787(95%CI:0.725-0.849),高于TNM[0.616(95%CI:0.558-0.674)和0.648(95%CI:0.581-0.715)]。校准曲线显示列线图预测与2年总生存(OS)的实际观察之间具有良好的相关性。IBS表明预测误差率较低(训练集:0.132对0.169;验证集:0.138对0.169)。DCA显示阈值范围比TNM更宽(训练集:0.01-0.96对0.01-0.85,验证集:0.01-0.94对0.01-0.86),临床净效益改善更大(在训练集中,列线图在0.19-0.96范围内比TNM具有更大的临床效益,在验证集中在0.19-0.94范围内保持)。基于性别、MON、NSE、Cyfra211、M分期、RT、CT周期和PCI这8个变量建立的用于预测SCLC患者2年OS的列线图模型可用于更准确的预后预测和治疗方案选择参考。