Suppr超能文献

NASP 通过两种不同的 H3 结合模式维持组蛋白 H3-H4 的平衡。

NASP maintains histone H3-H4 homeostasis through two distinct H3 binding modes.

机构信息

Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Novo Nordisk Center for Protein Research (CPR), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nucleic Acids Res. 2022 May 20;50(9):5349-5368. doi: 10.1093/nar/gkac303.

Abstract

Histone chaperones regulate all aspects of histone metabolism. NASP is a major histone chaperone for H3-H4 dimers critical for preventing histone degradation. Here, we identify two distinct histone binding modes of NASP and reveal how they cooperate to ensure histone H3-H4 supply. We determine the structures of a sNASP dimer, a complex of a sNASP dimer with two H3 α3 peptides, and the sNASP-H3-H4-ASF1b co-chaperone complex. This captures distinct functionalities of NASP and identifies two distinct binding modes involving the H3 α3 helix and the H3 αN region, respectively. Functional studies demonstrate the H3 αN-interaction represents the major binding mode of NASP in cells and shielding of the H3 αN region by NASP is essential in maintaining the H3-H4 histone soluble pool. In conclusion, our studies uncover the molecular basis of NASP as a major H3-H4 chaperone in guarding histone homeostasis.

摘要

组蛋白伴侣调节组蛋白代谢的各个方面。NASP 是 H3-H4 二聚体的主要组蛋白伴侣,对于防止组蛋白降解至关重要。在这里,我们确定了 NASP 的两种不同的组蛋白结合模式,并揭示了它们如何合作以确保组蛋白 H3-H4 的供应。我们确定了 sNASP 二聚体、sNASP 二聚体与两个 H3α3 肽的复合物以及 sNASP-H3-H4-ASF1b 共伴侣复合物的结构。这捕获了 NASP 的不同功能,并分别确定了涉及 H3α3 螺旋和 H3αN 区域的两种不同的结合模式。功能研究表明,H3αN 相互作用代表了 NASP 在细胞中的主要结合模式,并且 NASP 对 H3αN 区域的屏蔽对于维持 H3-H4 组蛋白可溶性池至关重要。总之,我们的研究揭示了 NASP 作为主要的 H3-H4 伴侣在保护组蛋白动态平衡方面的分子基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/9122598/8883c924f3d9/gkac303fig1.jpg

相似文献

1
NASP maintains histone H3-H4 homeostasis through two distinct H3 binding modes.
Nucleic Acids Res. 2022 May 20;50(9):5349-5368. doi: 10.1093/nar/gkac303.
2
Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.
Genes Dev. 2021 Dec 1;35(23-24):1610-1624. doi: 10.1101/gad.349100.121. Epub 2021 Nov 24.
3
The histone chaperone NASP maintains H3-H4 reservoirs in the early Drosophila embryo.
PLoS Genet. 2023 Mar 17;19(3):e1010682. doi: 10.1371/journal.pgen.1010682. eCollection 2023 Mar.
5
sNASP and ASF1A function through both competitive and compatible modes of histone binding.
Nucleic Acids Res. 2017 Jan 25;45(2):643-656. doi: 10.1093/nar/gkw892. Epub 2016 Oct 5.
6
The H3 chaperone function of NASP is conserved in Arabidopsis.
Plant J. 2016 Nov;88(3):425-436. doi: 10.1111/tpj.13263. Epub 2016 Sep 15.
8
Structural basis for histone H3 recognition by NASP in Arabidopsis.
J Integr Plant Biol. 2022 Dec;64(12):2309-2313. doi: 10.1111/jipb.13277. Epub 2022 Jun 13.
9
Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.
Structure. 2016 Oct 4;24(10):1810-1820. doi: 10.1016/j.str.2016.08.001. Epub 2016 Sep 8.
10
Evidence for the nuclear import of histones H3.1 and H4 as monomers.
EMBO J. 2018 Oct 1;37(19). doi: 10.15252/embj.201798714. Epub 2018 Sep 3.

引用本文的文献

1
NASP modulates histone turnover to drive PARP inhibitor resistance.
Nature. 2025 Aug 13. doi: 10.1038/s41586-025-09414-z.
2
NASP Promotes Triple-negative Breast Cancer Progression and Metastasis by Stabilizing YAP in a USP15-Dependent Way.
Int J Biol Sci. 2025 Jun 20;21(9):4172-4186. doi: 10.7150/ijbs.99438. eCollection 2025.
3
DEK-nucleosome structure shows DEK modulates H3K27me3 and stem cell fate.
Nat Struct Mol Biol. 2025 May 16. doi: 10.1038/s41594-025-01559-9.
5
DNAJC9 prevents CENP-A mislocalization and chromosomal instability by maintaining the fidelity of histone supply chains.
EMBO J. 2024 Jun;43(11):2166-2197. doi: 10.1038/s44318-024-00093-6. Epub 2024 Apr 10.
7
Unraveling Histone Loss in Aging and Senescence.
Cells. 2024 Feb 9;13(4):320. doi: 10.3390/cells13040320.
8
The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea.
PLoS Comput Biol. 2024 Jan 5;20(1):e1011721. doi: 10.1371/journal.pcbi.1011721. eCollection 2024 Jan.
10
sNASP Mutation Aggravates to the TLR4-Mediated Inflammation in SLE by TAK1 Pathway.
J Immunol Res. 2023 Sep 20;2023:4877700. doi: 10.1155/2023/4877700. eCollection 2023.

本文引用的文献

1
Distinct histone H3-H4 binding modes of sNASP reveal the basis for cooperation and competition of histone chaperones.
Genes Dev. 2021 Dec 1;35(23-24):1610-1624. doi: 10.1101/gad.349100.121. Epub 2021 Nov 24.
2
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network.
Mol Cell. 2021 Jun 17;81(12):2533-2548.e9. doi: 10.1016/j.molcel.2021.03.041. Epub 2021 Apr 14.
3
The roles of histone variants in fine-tuning chromatin organization and function.
Nat Rev Mol Cell Biol. 2020 Sep;21(9):522-541. doi: 10.1038/s41580-020-0262-8. Epub 2020 Jul 14.
4
The histone chaperoning pathway: from ribosome to nucleosome.
Essays Biochem. 2019 Apr 23;63(1):29-43. doi: 10.1042/EBC20180055.
5
H3-H4 Histone Chaperone Pathways.
Annu Rev Genet. 2018 Nov 23;52:109-130. doi: 10.1146/annurev-genet-120417-031547. Epub 2018 Sep 5.
6
Evidence for the nuclear import of histones H3.1 and H4 as monomers.
EMBO J. 2018 Oct 1;37(19). doi: 10.15252/embj.201798714. Epub 2018 Sep 3.
7
Multisite Substrate Recognition in Asf1-Dependent Acetylation of Histone H3 K56 by Rtt109.
Cell. 2018 Aug 9;174(4):818-830.e11. doi: 10.1016/j.cell.2018.07.005. Epub 2018 Jul 26.
8
Functional Analysis of Hif1 Histone Chaperone in .
G3 (Bethesda). 2018 May 31;8(6):1993-2006. doi: 10.1534/g3.118.200229.
9
The dTAG system for immediate and target-specific protein degradation.
Nat Chem Biol. 2018 May;14(5):431-441. doi: 10.1038/s41589-018-0021-8. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验