Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA.
Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
Metab Eng. 2022 Jul;72:297-310. doi: 10.1016/j.ymben.2022.04.004. Epub 2022 Apr 27.
Bacterial gene expression is orchestrated by numerous transcription factors (TFs). Elucidating how gene expression is regulated is fundamental to understanding bacterial physiology and engineering it for practical use. In this study, a machine-learning approach was applied to uncover the genome-scale transcriptional regulatory network (TRN) in Pseudomonas putida KT2440, an important organism for bioproduction. We performed independent component analysis of a compendium of 321 high-quality gene expression profiles, which were previously published or newly generated in this study. We identified 84 groups of independently modulated genes (iModulons) that explain 75.7% of the total variance in the compendium. With these iModulons, we (i) expand our understanding of the regulatory functions of 39 iModulon associated TFs (e.g., HexR, Zur) by systematic comparison with 1993 previously reported TF-gene interactions; (ii) outline transcriptional changes after the transition from the exponential growth to stationary phases; (iii) capture group of genes required for utilizing diverse carbon sources and increased stationary response with slower growth rates; (iv) unveil multiple evolutionary strategies of transcriptome reallocation to achieve fast growth rates; and (v) define an osmotic stimulon, which includes the Type VI secretion system, as coordination of multiple iModulon activity changes. Taken together, this study provides the first quantitative genome-scale TRN for P. putida KT2440 and a basis for a comprehensive understanding of its complex transcriptome changes in a variety of physiological states.
细菌基因表达受众多转录因子(TFs)调控。阐明基因表达调控机制对于理解细菌生理学并将其工程化用于实际应用至关重要。在这项研究中,我们应用机器学习方法揭示了重要生物生产菌 Pseudomonas putida KT2440 的全基因组转录调控网络(TRN)。我们对先前发表或本研究中生成的 321 个高质量基因表达谱的汇编进行了独立成分分析。我们确定了 84 组独立调节基因(iModulons),它们解释了汇编中总方差的 75.7%。利用这些 iModulons,我们 (i) 通过与 1993 个先前报道的 TF-基因相互作用系统比较,扩展了对 39 个 iModulon 相关 TF(如 HexR、Zur)的调控功能的理解;(ii) 概述了从指数生长到静止期的转录变化;(iii) 捕获了利用多种碳源和较慢生长速率时增加静止期响应所需的一组基因;(iv) 揭示了快速生长速率下转录组重新分配的多种进化策略;以及 (v) 定义了一个渗透刺激物组,其中包括六型分泌系统,作为多个 iModulon 活性变化的协调。总之,本研究为 P. putida KT2440 提供了第一个定量全基因组 TRN,并为全面理解其在各种生理状态下复杂的转录组变化提供了基础。