Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark.
Nucleic Acids Res. 2024 Oct 14;52(18):11362-11377. doi: 10.1093/nar/gkae742.
Synthetic biology enables the reprogramming of cellular functions for various applications. However, challenges in scalability and predictability persist due to context-dependent performance and complex circuit-host interactions. This study introduces an iModulon-based engineering approach, utilizing machine learning-defined co-regulated gene groups (iModulons) as design parts containing essential genes for specific functions. This approach identifies the necessary components for genetic circuits across different contexts, enhancing genome engineering by improving target selection and predicting module behavior. We demonstrate several distinct uses of iModulons: (i) discovery of unknown iModulons to increase protein productivity, heat tolerance and fructose utilization; (ii) an iModulon boosting approach, which amplifies the activity of specific iModulons, improved cell growth under osmotic stress with minimal host regulation disruption; (iii) an iModulon rebalancing strategy, which adjusts the activity levels of iModulons to balance cellular functions, significantly increased oxidative stress tolerance while minimizing trade-offs and (iv) iModulon-based gene annotation enabled natural competence activation by predictably rewiring iModulons. Comparative experiments with traditional methods showed our approach offers advantages in efficiency and predictability of strain engineering. This study demonstrates the potential of iModulon-based strategies to systematically and predictably reprogram cellular functions, offering refined and adaptable control over complex regulatory networks.
合成生物学使细胞功能的重新编程能够应用于各种领域。然而,由于性能的上下文相关性和复杂的电路-宿主相互作用,可扩展性和可预测性方面仍然存在挑战。本研究介绍了一种基于 iModulon 的工程方法,利用机器学习定义的共调控基因群(iModulons)作为设计部件,其中包含特定功能的必需基因。该方法可以识别不同环境下遗传电路所需的元件,通过改进目标选择和预测模块行为,提高基因组工程的效率。我们展示了 iModulons 的几种不同用途:(i)发现未知的 iModulons 以提高蛋白质产量、耐热性和果糖利用率;(ii)iModulon 增强方法,可放大特定 iModulon 的活性,在最小化宿主调控干扰的情况下,提高渗透压胁迫下的细胞生长;(iii)iModulon 再平衡策略,可调整 iModulon 的活性水平以平衡细胞功能,在最小化权衡的情况下,显著提高氧化应激耐受性;(iv)基于 iModulon 的基因注释通过可预测地重新布线 iModulon 来激活天然感受态。与传统方法的比较实验表明,我们的方法在菌株工程的效率和可预测性方面具有优势。本研究表明,基于 iModulon 的策略具有系统地和可预测地重新编程细胞功能的潜力,为复杂调控网络提供了精细和可适应的控制。