Drost Robert, Uhl Maximilian, Kot Piotr, Siebrecht Janis, Schmid Alexander, Merkt Jonas, Wünsch Stefan, Siegel Michael, Kieler Oliver, Kleiner Reinhold, Ast Christian R
Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany.
Rev Sci Instrum. 2022 Apr 1;93(4):043705. doi: 10.1063/5.0078137.
The continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100 GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STM to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analyzing inelastic tunneling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.
存储密度的不断提高以及对量子存储器和计算机的需求,推动了磁表征技术的极限。最终,需要一种能够相干地操纵和检测单个量子自旋的工具。扫描隧道显微镜(STM)是唯一一种结合了高空间和能量分辨率、低温以及高磁场等先决条件以实现这一目标的技术。电子自旋共振扫描隧道显微镜(ESR-STM)可用频率范围的限制意味着许多仪器在热噪声 regime 下运行。我们解决了信号传输方面的挑战,将 ESR-STM 的工作频率范围扩展了两倍多,达到了 100 GHz,使得塞曼能量在几百毫开尔文的可实现低温下成为主导能量尺度。我们提出了一种将现有仪器增强为 ESR-STM 以研究高场极限下自旋动力学的通用方法。我们通过分析由微波信号驱动的结中的非弹性隧穿来展示该仪器的性能,并为 ESR-STM 提供原理验证测量。