van Weerdenburg Werner M J, Steinbrecher Manuel, van Mullekom Niels P E, Gerritsen Jan W, von Allwörden Henning, Natterer Fabian D, Khajetoorians Alexander A
Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
Department of Physics, University of Zurich, CH-8057 Zurich, Switzerland.
Rev Sci Instrum. 2021 Mar 1;92(3):033906. doi: 10.1063/5.0040011.
In the last decade, detecting spin dynamics at the atomic scale has been enabled by combining techniques such as electron spin resonance (ESR) or pump-probe spectroscopy with scanning tunneling microscopy (STM). Here, we demonstrate an ultra-high vacuum STM operational at milliKelvin (mK) temperatures and in a vector magnetic field capable of both ESR and pump-probe spectroscopy. By implementing GHz compatible cabling, we achieve appreciable RF amplitudes at the junction while maintaining the mK base temperature and high energy resolution. We demonstrate the successful operation of our setup by utilizing two experimental ESR modes (frequency sweep and magnetic field sweep) on an individual TiH molecule on MgO/Ag(100) and extract the effective g-factor. We trace the ESR transitions down to MHz into an unprecedented low frequency band enabled by the mK base temperature. We also implement an all-electrical pump-probe scheme based on waveform sequencing suited for studying dynamics down to the nanoseconds range. We benchmark our system by detecting the spin relaxation time T of individual Fe atoms on MgO/Ag(100) and note a field strength and orientation dependent relaxation time.
在过去十年中,通过将电子自旋共振(ESR)或泵浦-探测光谱等技术与扫描隧道显微镜(STM)相结合,得以在原子尺度上探测自旋动力学。在此,我们展示了一种在毫开尔文(mK)温度下且在矢量磁场中运行的超高真空STM,它能够进行ESR和泵浦-探测光谱。通过采用GHz兼容电缆,我们在保持mK基温和高能量分辨率的同时,在结处实现了可观的射频振幅。我们通过在MgO/Ag(100)上的单个TiH分子上利用两种实验性ESR模式(频率扫描和磁场扫描)展示了我们装置的成功运行,并提取了有效g因子。我们将ESR跃迁追踪到兆赫兹,进入了由mK基温实现的前所未有的低频波段。我们还实施了一种基于波形序列的全电泵浦-探测方案,适用于研究纳秒范围内的动力学。我们通过检测MgO/Ag(100)上单个Fe原子的自旋弛豫时间T对我们的系统进行了基准测试,并注意到弛豫时间与场强和取向有关。