Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
FEBS J. 2022 Sep;289(18):5480-5504. doi: 10.1111/febs.16466. Epub 2022 May 11.
Protein phosphorylation is a major post-translational modification involved in cell signalling that regulates many physiological and pathological processes. Despite their biological importance, protein phosphatases are less studied than protein kinases. Importantly, the activity of Cys-based protein tyrosine phosphatases (PTPs) can be regulated by reversible oxidation. The initial two-electron oxidation product of the active site Cys is a sulfenic acid (Cys-SOH) that can then undergo distinct outcomes, such as the disulfide bond or a sulfenyl amide formation. Here, we review the biochemical and structural features of PTPs to find patterns that might specify their oxidation products, aiming to get insights into redox regulatory mechanisms. Initially, the structure and biochemistry of PTP1B is presented. Then, we describe structural aspects that are relevant for substrate recognition and catalysis. Notably, all PTPs contain critical Cys residues for the catalysis of dephosphorylation that is prone to oxidative inactivation, which are frequently found oxidized in cells under physiological conditions, such as upon growth factor stimuli. However, direct oxidations of Cys residues in PTPs by H O are rather slow. Therefore, we discuss possible mechanisms that may account for this apparent contradiction between biological and chemical redox aspects of PTPs. Furthermore, we performed a systematic analysis of the distance between active site cysteine and its backdoor cysteine with the attempt to analyse the preference between disulfide bond formation or sulfenyl amide interaction upon oxidation. In summary, PTPs have been showing many possibilities to auto-protect from irreversible oxidation, which is important for cell signalling regulation.
蛋白质磷酸化是一种涉及细胞信号转导的主要翻译后修饰,调节许多生理和病理过程。尽管蛋白质磷酸酶具有重要的生物学意义,但它们的研究不如蛋白质激酶广泛。重要的是,基于半胱氨酸的蛋白酪氨酸磷酸酶(PTPs)的活性可以通过可逆氧化来调节。活性位点半胱氨酸的初始两电子氧化产物是亚磺酸(Cys-SOH),然后可以发生不同的结果,如形成二硫键或亚磺酰基酰胺。在这里,我们回顾了 PTPs 的生化和结构特征,以找到可能指定其氧化产物的模式,旨在深入了解氧化还原调节机制。首先,介绍了 PTP1B 的结构和生物化学特性。然后,我们描述了与底物识别和催化相关的结构方面。值得注意的是,所有 PTPs 都包含关键的半胱氨酸残基,用于磷酸化的去磷酸化催化,这些残基在生理条件下容易发生氧化失活,例如在生长因子刺激下,这些残基在细胞中经常被氧化。然而,H 2 O 对 PTPs 中 Cys 残基的直接氧化相当缓慢。因此,我们讨论了可能的机制,以解释 PTPs 生物学和化学氧化还原方面之间的明显矛盾。此外,我们还对活性位点半胱氨酸与其后门半胱氨酸之间的距离进行了系统分析,试图分析氧化后形成二硫键或亚磺酰基酰胺相互作用的偏好。总之,PTPs 已经表现出许多自我保护免受不可逆氧化的可能性,这对于细胞信号转导调节非常重要。