Suppr超能文献

一种基于带正则化的稀疏神经网络的财务困境预测新方法。

A novel method for financial distress prediction based on sparse neural networks with regularization.

作者信息

Chen Ying, Guo Jifeng, Huang Junqin, Lin Bin

机构信息

International Business College, South China Normal University, Guangzhou, 510631 China.

School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510641 China.

出版信息

Int J Mach Learn Cybern. 2022;13(7):2089-2103. doi: 10.1007/s13042-022-01566-y. Epub 2022 Apr 27.

Abstract

Corporate financial distress is related to the interests of the enterprise and stakeholders. Therefore, its accurate prediction is of great significance to avoid huge losses from them. Despite significant effort and progress in this field, the existing prediction methods are either limited by the number of input variables or restricted to those financial predictors. To alleviate those issues, both financial variables and non-financial variables are screened out from the existing accounting and finance theory to use as financial distress predictors. In addition, a novel method for financial distress prediction (FDP) based on sparse neural networks is proposed, namely FDP-SNN, in which the weight of the hidden layer is constrained with regularization to achieve the sparsity, so as to select relevant and important predictors, improving the predicted accuracy. It also provides support for the interpretability of the model. The results show that non-financial variables, such as investor protection and governance structure, play a key role in financial distress prediction than those financial ones, especially when the forecast period grows longer. By comparing those classic models proposed by predominant researchers in accounting and finance, the proposed model outperforms in terms of accuracy, precision, and AUC performance.

摘要

企业财务困境与企业及其利益相关者的利益息息相关。因此,准确预测财务困境对于避免他们遭受巨大损失具有重要意义。尽管在这一领域付出了巨大努力并取得了进展,但现有的预测方法要么受到输入变量数量的限制,要么局限于那些财务预测指标。为了缓解这些问题,从现有的会计和金融理论中筛选出财务变量和非财务变量作为财务困境预测指标。此外,还提出了一种基于稀疏神经网络的财务困境预测新方法,即FDP-SNN,其中通过正则化约束隐藏层的权重以实现稀疏性,从而选择相关且重要的预测指标,提高预测准确性。它还为模型的可解释性提供了支持。结果表明,投资者保护和治理结构等非财务变量在财务困境预测中比财务变量发挥着更关键的作用,尤其是在预测期变长时。通过与会计和金融领域主要研究人员提出的那些经典模型进行比较,所提出的模型在准确性、精确性和AUC性能方面表现更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86f1/9044388/ec4b1b899c09/13042_2022_1566_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验