Elhoseny Mohamed, Metawa Noura, Sztano Gabor, El-Hasnony Ibrahim M
Faculty of Computers and Information, Mansoura University, Mansoura, Egypt.
College of Computing and Informatics, University of Sharjah, Sharjah, United Arab Emirates.
Ann Oper Res. 2022 May 25:1-23. doi: 10.1007/s10479-022-04766-5.
Predicting bankruptcies and assessing credit risk are two of the most pressing issues in finance. Therefore, financial distress prediction and credit scoring remain hot research topics in the finance sector. Earlier studies have focused on the design of statistical approaches and machine learning models to predict a company's financial distress. In this study, an adaptive whale optimization algorithm with deep learning (AWOA-DL) technique is used to create a new financial distress prediction model. The goal of the AWOA-DL approach is to determine whether a company is experiencing financial distress or not. A deep neural network (DNN) model called multilayer perceptron based predictive and AWOA-based hyperparameter tuning processes are used in the AWOA-DL method. Primarily, the DNN model receives the financial data as input and predicts financial distress. In addition, the AWOA is applied to tune the DNN model's hyperparameters, thereby raising the predictive outcome. The proposed model is applied in three stages: preprocessing, hyperparameter tuning using AWOA, and the prediction phase. A comprehensive simulation took place on four datasets, and the results pointed out the supremacy of the AWOA-DL method over other compared techniques by achieving an average accuracy of 95.8%, where the average accuracy equals 93.8%, 89.6%, 84.5%, and 78.2% for compared models.
预测破产和评估信用风险是金融领域最紧迫的两个问题。因此,财务困境预测和信用评分仍然是金融领域的热门研究课题。早期的研究主要集中在设计统计方法和机器学习模型来预测公司的财务困境。在本研究中,采用了一种结合深度学习的自适应鲸鱼优化算法(AWOA-DL)来创建一个新的财务困境预测模型。AWOA-DL方法的目标是确定一家公司是否正处于财务困境之中。AWOA-DL方法使用了一种名为基于多层感知器预测的深度神经网络(DNN)模型以及基于AWOA的超参数调整过程。首先,DNN模型将财务数据作为输入,并预测财务困境。此外,应用AWOA来调整DNN模型的超参数,从而提高预测结果。所提出的模型分三个阶段应用:预处理、使用AWOA进行超参数调整以及预测阶段。在四个数据集上进行了全面的模拟,结果表明AWOA-DL方法优于其他对比技术,平均准确率达到95.8%,而对比模型的平均准确率分别为93.8%、89.6%、84.5%和78.2%。