Suppr超能文献

体育领域中基于无人机的位置检测——验证与应用

Drone-Based Position Detection in Sports-Validation and Applications.

作者信息

Russomanno Tiago Guedes, Blauberger Patrick, Kolbinger Otto, Lam Hilary, Schmid Marc, Lames Martin

机构信息

Chair of Performance Analysis and Sports Informatics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany.

Laboratory for Teaching Computer Science Applied to Physical Education and Sport, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil.

出版信息

Front Physiol. 2022 Mar 17;13:850512. doi: 10.3389/fphys.2022.850512. eCollection 2022.

Abstract

Radio and video-based electronic performance and tracking systems (EPTS) for position detection are widely used in a variety of sports. In this paper, the authors introduce an innovative approach to video-based tracking that uses a single camera attached to a drone to capture an area of interest from a bird's eye view. This pilot validation study showcases several applications of this novel approach for the analysis of game and racket sports. To this end, the authors compared positional data retrieved from video footage recorded using a drone with positional data obtained from established radio-based systems in three different setups: a tennis match during training with the drone hovering at a height of 27 m, a small-sided soccer game with the drone at a height of 50 m, and an Ultimate Frisbee match with the drone at a height of 85 m. For each type of playing surface, clay (tennis) and grass (soccer and Ultimate), the drone-based system demonstrated acceptable static accuracy with root mean square errors of 0.02 m (clay) and 0.15 m (grass). The total distance measured using the drone-based system showed an absolute difference of 2.78% in Ultimate and 2.36% in soccer, when compared to an established GPS system and an absolute difference of 2.68% in tennis, when compared to a state-of-the-art LPS. The overall ICC value for consistency was 0.998. Further applications of a drone-based EPTS and the collected positional data in the context of performance analysis are discussed. Based on the findings of this pilot validation study, we conclude that drone-based position detection could serve as a promising alternative to existing EPTS but would benefit from further comparisons in dynamic settings and across different sports.

摘要

用于位置检测的基于无线电和视频的电子性能与跟踪系统(EPTS)在各类体育运动中被广泛应用。在本文中,作者介绍了一种基于视频跟踪的创新方法,该方法使用连接到无人机的单个摄像头从鸟瞰视角捕捉感兴趣的区域。这项初步验证研究展示了这种新方法在比赛和球拍类运动分析中的多种应用。为此,作者在三种不同场景下,将从无人机录制的视频片段中获取的位置数据与从已有的基于无线电的系统中获得的位置数据进行了比较:在训练期间的一场网球比赛中,无人机悬停在27米的高度;一场小型足球比赛中,无人机在50米的高度;一场极限飞盘比赛中,无人机在85米的高度。对于每种比赛场地类型,即红土场地(网球)和草地场地(足球和极限飞盘),基于无人机的系统表现出了可接受的静态精度,均方根误差分别为0.02米(红土)和0.15米(草地)。与已有的GPS系统相比,基于无人机的系统测量的总距离在极限飞盘中显示出2.78%的绝对差异,在足球中为2.36%;与最先进的LPS相比,在网球中为2.68%。一致性的总体组内相关系数(ICC)值为0.998。文中还讨论了基于无人机的EPTS以及收集到的位置数据在性能分析方面的进一步应用。基于这项初步验证研究的结果,我们得出结论,基于无人机的位置检测可以成为现有EPTS的一个有前景的替代方案,但在动态环境和不同运动项目中的进一步比较将使其受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dc/9040709/34b452bf5824/fphys-13-850512-g001.jpg

相似文献

7
Quantified Soccer Using Positional Data: A Case Study.利用位置数据的量化足球:一个案例研究。
Front Physiol. 2018 Jul 6;9:866. doi: 10.3389/fphys.2018.00866. eCollection 2018.

本文引用的文献

5
Football-specific validity of TRACAB's optical video tracking systems.TRACAB 光学视频跟踪系统的足球专项有效性。
PLoS One. 2020 Mar 10;15(3):e0230179. doi: 10.1371/journal.pone.0230179. eCollection 2020.
10
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.更快的 R-CNN:基于区域建议网络的实时目标检测。
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验