文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于齿痕舌识别的弱监督深度学习

Weakly Supervised Deep Learning for Tooth-Marked Tongue Recognition.

作者信息

Zhou Jianguo, Li Shangxuan, Wang Xuesong, Yang Zizhu, Hou Xinyuan, Lai Wei, Zhao Shifeng, Deng Qingqiong, Zhou Wu

机构信息

School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China.

School of Artificial Intelligence, Beijing Normal University, Beijing, China.

出版信息

Front Physiol. 2022 Apr 12;13:847267. doi: 10.3389/fphys.2022.847267. eCollection 2022.


DOI:10.3389/fphys.2022.847267
PMID:35492602
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9039050/
Abstract

The recognition of tooth-marked tongues has important value for clinical diagnosis of traditional Chinese medicine. Tooth-marked tongue is often related to spleen deficiency, cold dampness, sputum, effusion, and blood stasis. The clinical manifestations of patients with tooth-marked tongue include loss of appetite, borborygmus, gastric distention, and loose stool. Traditional clinical tooth-marked tongue recognition is conducted subjectively based on the doctor's visual observation, and its performance is affected by the doctor's subjectivity, experience, and environmental lighting changes. In addition, the tooth marks typically have various shapes and colors on the tongue, which make it very challenging for doctors to identify tooth marks. The existing methods based on deep learning have made great progress for tooth-marked tongue recognition, but there are still shortcomings such as requiring a large amount of manual labeling of tooth marks, inability to detect and locate the tooth marks, and not conducive to clinical diagnosis and interpretation. In this study, we propose an end-to-end deep neural network for tooth-marked tongue recognition based on weakly supervised learning. Note that the deep neural network only requires image-level annotations of tooth-marked or non-tooth marked tongues. In this method, a deep neural network is trained to classify tooth-marked tongues with the image-level annotations. Then, a weakly supervised tooth-mark detection network (WSTDN) as an architecture variant of the pre-trained deep neural network is proposed for the tooth-marked region detection. Finally, the WSTDN is re-trained and fine-tuned using only the image-level annotations to simultaneously realize the classification of the tooth-marked tongue and the positioning of the tooth-marked region. Experimental results of clinical tongue images demonstrate the superiority of the proposed method compared with previously reported deep learning methods for tooth-marked tongue recognition. The proposed tooth-marked tongue recognition model may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms.

摘要

齿痕舌的识别对于中医临床诊断具有重要价值。齿痕舌常与脾虚、寒湿、痰湿、水饮、血瘀等有关。齿痕舌患者的临床表现包括食欲不振、肠鸣、胃胀和大便溏薄。传统临床齿痕舌识别是基于医生的视觉观察进行主观判断的,其性能受医生主观性、经验和环境光照变化的影响。此外,齿痕在舌头上通常有各种形状和颜色,这使得医生识别齿痕非常具有挑战性。现有的基于深度学习的方法在齿痕舌识别方面取得了很大进展,但仍存在需要大量齿痕人工标注、无法检测和定位齿痕以及不利于临床诊断和解释等缺点。在本研究中,我们提出了一种基于弱监督学习的用于齿痕舌识别的端到端深度神经网络。需要注意的是,该深度神经网络仅需要齿痕舌或非齿痕舌的图像级标注。在这种方法中,利用图像级标注训练深度神经网络对齿痕舌进行分类。然后,提出了一种弱监督齿痕检测网络(WSTDN)作为预训练深度神经网络的架构变体用于齿痕区域检测。最后,仅使用图像级标注对WSTDN进行重新训练和微调,以同时实现齿痕舌的分类和齿痕区域的定位。临床舌图像的实验结果表明,与先前报道的用于齿痕舌识别的深度学习方法相比,所提方法具有优越性。所提出的齿痕舌识别模型可能提供重要的证候诊断和疗效评估方法,并有助于理解民族药理学机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/02ff9f3e83f1/fphys-13-847267-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/1d06f527587a/fphys-13-847267-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/271d6315a76d/fphys-13-847267-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/5e4be23757ad/fphys-13-847267-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/5fb6134f7be9/fphys-13-847267-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/6d6cceee6b6a/fphys-13-847267-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/e946d1a45110/fphys-13-847267-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/e427ec3c0a41/fphys-13-847267-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/02ff9f3e83f1/fphys-13-847267-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/1d06f527587a/fphys-13-847267-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/271d6315a76d/fphys-13-847267-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/5e4be23757ad/fphys-13-847267-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/5fb6134f7be9/fphys-13-847267-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/6d6cceee6b6a/fphys-13-847267-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/e946d1a45110/fphys-13-847267-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/e427ec3c0a41/fphys-13-847267-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4f/9039050/02ff9f3e83f1/fphys-13-847267-g008.jpg

相似文献

[1]
Weakly Supervised Deep Learning for Tooth-Marked Tongue Recognition.

Front Physiol. 2022-4-12

[2]
Tooth-Marked Tongue Recognition Using Multiple Instance Learning and CNN Features.

IEEE Trans Cybern. 2018-1-30

[3]
Artificial intelligence in tongue diagnosis: Using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark.

Comput Struct Biotechnol J. 2020-4-8

[4]
Human-computer interaction based health diagnostics using ResNet34 for tongue image classification.

Comput Methods Programs Biomed. 2022-11

[5]
Constructing tongue coating recognition model using deep transfer learning to assist syndrome diagnosis and its potential in noninvasive ethnopharmacological evaluation.

J Ethnopharmacol. 2022-3-1

[6]
Tongue feature dataset construction and real-time detection.

PLoS One. 2024

[7]
Deep Learning Multi-label Tongue Image Analysis and Its Application in a Population Undergoing Routine Medical Checkup.

Evid Based Complement Alternat Med. 2022-9-29

[8]
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.

IEEE Trans Cybern. 2020-9

[9]
Tongue crack recognition using segmentation based deep learning.

Sci Rep. 2023-1-10

[10]
An Intelligent Tongue Diagnosis System via Deep Learning on the Android Platform.

Diagnostics (Basel). 2022-10-10

引用本文的文献

[1]
GA-TongueNet: tongue image segmentation network using innovative DiFP and MDi for stable generalization ability.

Front Physiol. 2025-6-24

[2]
TonguExpert: A Deep Learning-Based Algorithm Platform for Fine-Grained Extraction and Classification of Tongue Phenotypes.

Phenomics. 2025-3-26

[3]
Weakly supervised multiple-instance active learning for tooth-marked tongue recognition.

Front Physiol. 2025-6-11

[4]
Digital intelligence technology: new quality productivity for precision traditional Chinese medicine.

Front Pharmacol. 2025-4-8

[5]
Tongue shape classification based on IF-RCNet.

Sci Rep. 2025-3-1

[6]
Exploring the pivotal variables of tongue diagnosis between patients with chronic kidney disease and health participants.

Front Big Data. 2025-1-3

[7]
Artificial intelligence in tongue diagnosis: classification of tongue lesions and normal tongue images using deep convolutional neural network.

BMC Med Imaging. 2024-3-8

[8]
Tongue feature dataset construction and real-time detection.

PLoS One. 2024

[9]
Intelligent Chinese Medicine: A New Direction Approach for Integrative Medicine in Diagnosis and Treatment of Cardiovascular Diseases.

Chin J Integr Med. 2023-7

[10]
Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study.

EClinicalMedicine. 2023-2-6

本文引用的文献

[1]
Constructing tongue coating recognition model using deep transfer learning to assist syndrome diagnosis and its potential in noninvasive ethnopharmacological evaluation.

J Ethnopharmacol. 2022-3-1

[2]
Tongue image quality assessment based on a deep convolutional neural network.

BMC Med Inform Decis Mak. 2021-5-5

[3]
The tongue features associated with chronic kidney disease.

Medicine (Baltimore). 2021-3-5

[4]
Artificial intelligence in tongue diagnosis: Using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark.

Comput Struct Biotechnol J. 2020-4-8

[5]
Multi-Task Joint Learning Model for Segmenting and Classifying Tongue Images Using a Deep Neural Network.

IEEE J Biomed Health Inform. 2020-9

[6]
Gender- and age-dependent tongue features in a community-based population.

Medicine (Baltimore). 2019-12

[7]
Automatic Construction of Chinese Herbal Prescriptions From Tongue Images Using CNNs and Auxiliary Latent Therapy Topics.

IEEE Trans Cybern. 2021-2

[8]
Tooth-Marked Tongue Recognition Using Multiple Instance Learning and CNN Features.

IEEE Trans Cybern. 2018-1-30

[9]
Objective research on tongue manifestation of patients with eczema.

Technol Health Care. 2017-7-20

[10]
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

IEEE Trans Pattern Anal Mach Intell. 2015-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索