Li Ting, Zuo Ling, Wang Pengyu, Yang Liangfu, Liu Zijia, Wang Xu, Tan Jingze, Yang Yajun, Wang Jiucun, Zhou Yong, Jin Li, Zhai Guangtao, Chen Jianxin, Peng Qianqian, Zhang Guoqing, Wang Sijia
CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China.
Phenomics. 2025 Mar 26;5(2):109-122. doi: 10.1007/s43657-024-00210-9. eCollection 2025 Apr.
Tongue analysis holds promise for disease detection and health monitoring, especially in traditional Chinese medicine. However, its subjectivity hinders clinical applications. Deep learning offers a path for automated tongue diagnosis, yet existing methods struggle to capture subtle details, and the lack of large datasets hampers the development of robust and generalizable models. To address these challenges, we introduce TonguExpert (https://www.biosino.org/TonguExpert), a free platform for archiving, analyzing, and extracting phenotypes from tongue images. Our deep learning framework integrates cutting-edge techniques for tongue segmentation and phenotype extraction. TonguExpert analyzes a massive dataset of 5992 tongue images from a Chinese population and extracts 773 phenotypes including five predicted labels and their probabilities, 355 global features (entire tongue, tongue body, and tongue coating) and 408 local features (fissures and tooth marks) in a unified process. Besides, 580 additional features for five tongue subregions are also available for future study. Notably, TonguExpert outperforms manual classification methods, achieving high accuracy (ROC-AUC 0.89-0.99 for color, 0.97 for fissures, 0.88 for tooth marks). Additionally, the model generalizes well to predict new phenotypes (e.g., greasy coating) using external datasets. This allows the model to learn from a broader spectrum of data, potentially improving its overall performance. We also release the largest publicly available dataset of tongue images and phenotypes, which is invaluable for advancing automated analysis and clinical applications of tongue diagnosis. In summary, this research advances automated tongue diagnosis, paving the way for wider clinical adoption and potentially expanding the applications in the future.
The online version contains supplementary material available at 10.1007/s43657-024-00210-9.
舌象分析在疾病检测和健康监测方面具有潜力,尤其是在传统中医领域。然而,其主观性阻碍了临床应用。深度学习为自动舌诊提供了一条途径,但现有方法难以捕捉细微细节,且缺乏大型数据集阻碍了强大且可推广模型的开发。为应对这些挑战,我们推出了 TonguExpert(https://www.biosino.org/TonguExpert),这是一个用于存档、分析和从舌象图像中提取表型的免费平台。我们的深度学习框架集成了用于舌象分割和表型提取的前沿技术。TonguExpert 分析了来自中国人群的 5992 张舌象图像的海量数据集,并在一个统一过程中提取了 773 种表型,包括五个预测标签及其概率、355 个全局特征(整个舌头、舌体和舌苔)和 408 个局部特征(裂纹和齿痕)。此外,五个舌象子区域的 580 个附加特征也可供未来研究使用。值得注意的是,TonguExpert 优于手动分类方法,实现了高精度(颜色的 ROC-AUC 为 0.89 - 0.99,裂纹为 0.97,齿痕为 0.88)。此外,该模型在使用外部数据集预测新表型(如腻苔)方面具有良好的泛化能力。这使模型能够从更广泛的数据中学习,可能提高其整体性能。我们还发布了最大的公开可用舌象图像和表型数据集,这对于推进舌诊的自动分析和临床应用具有重要价值。总之,这项研究推动了自动舌诊的发展,为更广泛的临床应用铺平了道路,并有可能在未来扩展应用范围。
在线版本包含可在 10.1007/s'43657 - 024 - 00210 - 9 获得的补充材料。