Suppr超能文献

舌象专家:基于深度学习的舌象细粒度提取与分类算法平台

TonguExpert: A Deep Learning-Based Algorithm Platform for Fine-Grained Extraction and Classification of Tongue Phenotypes.

作者信息

Li Ting, Zuo Ling, Wang Pengyu, Yang Liangfu, Liu Zijia, Wang Xu, Tan Jingze, Yang Yajun, Wang Jiucun, Zhou Yong, Jin Li, Zhai Guangtao, Chen Jianxin, Peng Qianqian, Zhang Guoqing, Wang Sijia

机构信息

CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.

School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China.

出版信息

Phenomics. 2025 Mar 26;5(2):109-122. doi: 10.1007/s43657-024-00210-9. eCollection 2025 Apr.

Abstract

UNLABELLED

Tongue analysis holds promise for disease detection and health monitoring, especially in traditional Chinese medicine. However, its subjectivity hinders clinical applications. Deep learning offers a path for automated tongue diagnosis, yet existing methods struggle to capture subtle details, and the lack of large datasets hampers the development of robust and generalizable models. To address these challenges, we introduce TonguExpert (https://www.biosino.org/TonguExpert), a free platform for archiving, analyzing, and extracting phenotypes from tongue images. Our deep learning framework integrates cutting-edge techniques for tongue segmentation and phenotype extraction. TonguExpert analyzes a massive dataset of 5992 tongue images from a Chinese population and extracts 773 phenotypes including five predicted labels and their probabilities, 355 global features (entire tongue, tongue body, and tongue coating) and 408 local features (fissures and tooth marks) in a unified process. Besides, 580 additional features for five tongue subregions are also available for future study. Notably, TonguExpert outperforms manual classification methods, achieving high accuracy (ROC-AUC 0.89-0.99 for color, 0.97 for fissures, 0.88 for tooth marks). Additionally, the model generalizes well to predict new phenotypes (e.g., greasy coating) using external datasets. This allows the model to learn from a broader spectrum of data, potentially improving its overall performance. We also release the largest publicly available dataset of tongue images and phenotypes, which is invaluable for advancing automated analysis and clinical applications of tongue diagnosis. In summary, this research advances automated tongue diagnosis, paving the way for wider clinical adoption and potentially expanding the applications in the future.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-024-00210-9.

摘要

未标注

舌象分析在疾病检测和健康监测方面具有潜力,尤其是在传统中医领域。然而,其主观性阻碍了临床应用。深度学习为自动舌诊提供了一条途径,但现有方法难以捕捉细微细节,且缺乏大型数据集阻碍了强大且可推广模型的开发。为应对这些挑战,我们推出了 TonguExpert(https://www.biosino.org/TonguExpert),这是一个用于存档、分析和从舌象图像中提取表型的免费平台。我们的深度学习框架集成了用于舌象分割和表型提取的前沿技术。TonguExpert 分析了来自中国人群的 5992 张舌象图像的海量数据集,并在一个统一过程中提取了 773 种表型,包括五个预测标签及其概率、355 个全局特征(整个舌头、舌体和舌苔)和 408 个局部特征(裂纹和齿痕)。此外,五个舌象子区域的 580 个附加特征也可供未来研究使用。值得注意的是,TonguExpert 优于手动分类方法,实现了高精度(颜色的 ROC-AUC 为 0.89 - 0.99,裂纹为 0.97,齿痕为 0.88)。此外,该模型在使用外部数据集预测新表型(如腻苔)方面具有良好的泛化能力。这使模型能够从更广泛的数据中学习,可能提高其整体性能。我们还发布了最大的公开可用舌象图像和表型数据集,这对于推进舌诊的自动分析和临床应用具有重要价值。总之,这项研究推动了自动舌诊的发展,为更广泛的临床应用铺平了道路,并有可能在未来扩展应用范围。

补充信息

在线版本包含可在 10.1007/s'43657 - 024 - 00210 - 9 获得的补充材料。

相似文献

1
TonguExpert: A Deep Learning-Based Algorithm Platform for Fine-Grained Extraction and Classification of Tongue Phenotypes.
Phenomics. 2025 Mar 26;5(2):109-122. doi: 10.1007/s43657-024-00210-9. eCollection 2025 Apr.
2
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
6
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
8
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
9
UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction.
Comput Biol Med. 2025 Aug;194:110435. doi: 10.1016/j.compbiomed.2025.110435. Epub 2025 Jun 4.
10
Automatic Segmentation and Alignment of Uterine Shapes from 3D Ultrasound Data.
Comput Biol Med. 2024 Aug;178:108794. doi: 10.1016/j.compbiomed.2024.108794. Epub 2024 Jun 27.

本文引用的文献

1
Characterization of tongue coating microbiome from patients with colorectal cancer.
J Oral Microbiol. 2024 Apr 26;16(1):2344278. doi: 10.1080/20002297.2024.2344278. eCollection 2024.
2
Analysis of blood methylation quantitative trait loci in East Asians reveals ancestry-specific impacts on complex traits.
Nat Genet. 2024 May;56(5):846-860. doi: 10.1038/s41588-023-01494-9. Epub 2024 Apr 19.
3
Biology of tongue coating in different disease stages of RA and its value in disease progression.
Microb Pathog. 2024 Jun;191:106644. doi: 10.1016/j.micpath.2024.106644. Epub 2024 Apr 12.
5
Development and validation of predictive model based on deep learning method for classification of dyslipidemia in Chinese medicine.
Health Inf Sci Syst. 2023 Apr 6;11(1):21. doi: 10.1007/s13755-023-00215-0. eCollection 2023 Dec.
6
Development of a tongue image-based machine learning tool for the diagnosis of gastric cancer: a prospective multicentre clinical cohort study.
EClinicalMedicine. 2023 Feb 6;57:101834. doi: 10.1016/j.eclinm.2023.101834. eCollection 2023 Mar.
7
RAFF-Net: An improved tongue segmentation algorithm based on residual attention network and multiscale feature fusion.
Digit Health. 2022 Nov 3;8:20552076221136362. doi: 10.1177/20552076221136362. eCollection 2022 Jan-Dec.
8
Exploring the pivotal variables of tongue diagnosis between patients with acute ischemic stroke and health participants.
J Tradit Complement Med. 2022 Apr 7;12(5):505-510. doi: 10.1016/j.jtcme.2022.04.001. eCollection 2022 Sep.
9
MEA-Net: multilayer edge attention network for medical image segmentation.
Sci Rep. 2022 May 12;12(1):7868. doi: 10.1038/s41598-022-11852-y.
10
Weakly Supervised Deep Learning for Tooth-Marked Tongue Recognition.
Front Physiol. 2022 Apr 12;13:847267. doi: 10.3389/fphys.2022.847267. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验