Suppr超能文献

化学功能化氮化铟单层的第一性原理预测:电子和光学性质

First-principles prediction of chemically functionalized InN monolayers: electronic and optical properties.

作者信息

Vu Tuan V, Pham Khang D, Pham Tri Nhut, Vo Dat D, Dang Phuc Toan, Nguyen Chuong V, Phuc Huynh V, Binh Nguyen T T, Hoat D M, Hieu Nguyen N

机构信息

Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University Ho Chi Minh City Vietnam

Faculty of Electrical & Electronics Engineering, Ton Duc Thang University Ho Chi Minh City Vietnam.

出版信息

RSC Adv. 2020 Mar 13;10(18):10731-10739. doi: 10.1039/d0ra01025a. eCollection 2020 Mar 11.

Abstract

In this work, we consider the electronic and optical properties of chemically functionalized InN monolayers with F and Cl atoms (, F-InN-F, F-InN-Cl, Cl-InN-F, Cl-InN-Cl monolayers) using first-principles calculations. The adsorption of the F and Cl atoms on the InN monolayer is determined to be chemically stable and the F-InN-F monolayer is most likely to occur. Our calculations show that the chemical functionalization with Cl and F atoms not only breaks the planar structure of InN monolayer but also increases its band gap. By using both Perdew, Burke, and Ernzerhof (PBE) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals, all four models of chemically functionalized InN monolayers are found to be semiconductors with direct energy gaps and these gaps depend on the constituent species. When the spin-orbit coupling (SOC) was included, the energy gap of these monolayers was reduced and an energy splitting was found at the Γ-point in the valence band. Chemically functionalized InN monolayers can absorb light in a wide region, especially the F-InN-F and Cl-InN-F monolayers have a strong ability to absorb the visible light. Our findings reveal that the chemically functionalized InN monolayers have potential applications in next-generation optoelectronic devices.

摘要

在这项工作中,我们使用第一性原理计算方法研究了用氟(F)和氯(Cl)原子化学功能化的氮化铟(InN)单层(F-InN-F、F-InN-Cl、Cl-InN-F、Cl-InN-Cl单层)的电子和光学性质。F和Cl原子在InN单层上的吸附被确定为化学稳定,且F-InN-F单层最有可能出现。我们的计算表明,用Cl和F原子进行化学功能化不仅打破了InN单层的平面结构,还增加了其带隙。通过使用佩德韦-伯克-恩泽霍夫(PBE)和海德-斯库西亚-恩泽霍夫(HSE06)杂化泛函,发现所有四种化学功能化InN单层模型都是具有直接能隙的半导体,且这些能隙取决于组成物种。当包含自旋轨道耦合(SOC)时,这些单层的能隙减小,并且在价带的Γ点发现了能量分裂。化学功能化的InN单层可以在很宽的区域吸收光,特别是F-InN-F和Cl-InN-F单层具有很强的可见光吸收能力。我们的研究结果表明,化学功能化的InN单层在下一代光电器件中具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验