Manojkumar Palnati, Mahipal Varukolu, Suresh Gangadhari, Venkatesh Nampally, Ramesh Macha, Parthasarathy Tigulla
Department of Chemistry, Osmania University Hyderabad-500007 India
School of Chemistry, University of Hyderabad Gachibowli Hyderabad-500046 India.
RSC Adv. 2021 Dec 16;11(63):39994-40010. doi: 10.1039/d1ra07658b. eCollection 2021 Dec 13.
The new chemistry of the hydrogen-bonded charge and proton transfer complex (HB CT) between electron-donor 2-methyl-8-quinolinol (2 MQ) and electron-acceptor chloranilic acid (CHLA) has been studied using electronic absorption spectroscopy in acetonitrile (ACN), methanol (MeOH), and ethanol (EtOH) polar media at room temperature. The stoichiometric proportion of the HB CT complex was observed to be 1 : 1 from the Job data and photometric titration process. The association constant ( ) and molar absorptivity ( ) of the HB CT complex were determined by using the modified Benesi-Hildebrand equation in three polarities. Other spectroscopic physical parameters like the energy of interaction ( ), ionization potential ( ), resonance energy ( ), standard free energy change (Δ°), oscillator strength (), and transition dipole moment () were also evaluated. The HB CT complex structure was confirmed by different characterization techniques, such as FT-IR, NMR, TGA-DTA, and SEM-EDX analysis. Powder XRD and single-crystal XRD were used to determine the nature and structure of the synthesized HB CT complex. DNA binding studies for the HB CT complex produced a good binding constant value of 2.25 × 10 L mol in UV-visible and 1.17 × 10 L mol in fluorescence spectroscopy. The biological activity of the HB CT complex was also tested against the growth of bacteria and fungi, and the results indicated remarkable activity for the HB CT complex compared to the standard drugs, ampicillin and clindamycin. Hence, the abovementioned biological results of the synthesized HB CT complex show it could be used as a pharmaceutical drug in the future. Computational analysis was carried out by DFT studies using the B3LYP function with a basis set of 6-31G(d,p) in the gas phase and PCM analysis. The computational studies further supported the experimental results by confirming the charge and proton transfer complex.
在室温下,使用电子吸收光谱法,在乙腈(ACN)、甲醇(MeOH)和乙醇(EtOH)等极性介质中,研究了电子供体2-甲基-8-喹啉醇(2 MQ)与电子受体氯冉酸(CHLA)之间氢键电荷和质子转移复合物(HB CT)的新化学性质。从乔布氏数据和光度滴定过程中观察到HB CT复合物的化学计量比为1∶1。利用修正的贝内西-希尔德布兰德方程,在三种极性条件下测定了HB CT复合物的缔合常数( )和摩尔吸光率( )。还评估了其他光谱物理参数,如相互作用能( )、电离势( )、共振能( )、标准自由能变化(Δ°)、振子强度()和跃迁偶极矩()。通过傅里叶变换红外光谱(FT-IR)、核磁共振(NMR)、热重-差热分析(TGA-DTA)和扫描电子显微镜-能谱分析(SEM-EDX)等不同表征技术,证实了HB CT复合物的结构。粉末X射线衍射(XRD)和单晶XRD用于确定合成的HB CT复合物的性质和结构。HB CT复合物的DNA结合研究在紫外-可见光谱中产生了良好的结合常数2.25×10 L mol,在荧光光谱中为1.17×10 L mol。还测试了HB CT复合物对细菌和真菌生长的生物活性,结果表明与标准药物氨苄青霉素和克林霉素相比,HB CT复合物具有显著活性。因此,合成的HB CT复合物的上述生物学结果表明,它未来可能用作药物。在气相中使用B3LYP函数和6-31G(d,p)基组进行密度泛函理论(DFT)研究,并进行极化连续介质模型(PCM)分析,进行了计算分析。计算研究通过确认电荷和质子转移复合物进一步支持了实验结果。