Subramanya Usha, Chua Charleston, He Leong Victor Gin, Robinson Ryan, Cruz Cabiltes Gwenlyn Angel, Singh Prakirti, Yip Bonnie, Bokare Anuja, Erogbogbo Folarin, Oh Dahyun
Chemical and Materials Engineering Department, Charles W. Davidson College of Engineering, San José State University One Washington Square San José CA 95192-0080 USA
Biomedical Engineering Department, Charles W. Davidson College of Engineering, San José State University One Washington Square San José CA 95192-0080 USA.
RSC Adv. 2020 Jan 2;10(2):674-681. doi: 10.1039/c9ra08268a.
Replacing flammable organic electrolytes with aqueous electrolytes in lithium-ion batteries (LIB) can greatly enhance the safety of next-generation energy storage systems. With the extended electrochemical stability window of electrolytes, 'water-in-salt' (WIS) electrolytes containing LIB presented significant performance improvements. However, the solubility limits of lithium salts in water restrain the extent of kinetic protection offered by the high salt concentration. Here, we report design strategies of anode structure to improve the cycle life of LIB with WIS electrolytes. We introduced partially graphitic protective carbon layers on anode particles using a versatile coating method. This protective layer not only improved charge transfer kinetics but also minimized the exposure of anode surface for water electrolysis. The effectiveness of anode structure developed in this study was exemplified on TiO anodes, where cycle performance and coulombic efficiency improved by 11 times and 29% respectively over the base anode material.
在锂离子电池(LIB)中用水性电解质替代易燃有机电解质可极大提高下一代储能系统的安全性。随着电解质电化学稳定性窗口的扩大,含锂离子电池的“盐包水”(WIS)电解质性能有显著提升。然而,锂盐在水中的溶解度限制了高盐浓度所提供的动力学保护程度。在此,我们报告了用于提高含WIS电解质的锂离子电池循环寿命的阳极结构设计策略。我们采用通用涂层方法在阳极颗粒上引入了部分石墨化的保护性碳层。该保护层不仅改善了电荷转移动力学,还使阳极表面用于水电解的暴露最小化。本研究开发的阳极结构的有效性在TiO阳极上得到了例证,与基础阳极材料相比,其循环性能和库仑效率分别提高了11倍和29%。