Suppr超能文献

具有高能量密度和可逆性的独特水系锂离子/硫化学体系。

Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

作者信息

Yang Chongyin, Suo Liumin, Borodin Oleg, Wang Fei, Sun Wei, Gao Tao, Fan Xiulin, Hou Singyuk, Ma Zhaohui, Amine Khalil, Xu Kang, Wang Chunsheng

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740.

Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division, US Army Research Laboratory, Adelphi, MD 20783.

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6197-6202. doi: 10.1073/pnas.1703937114. Epub 2017 May 31.

Abstract

Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

摘要

利用在扩大水性电解质的电化学稳定性窗口方面的最新成果,在这项工作中,我们创造了一种兼具高能量密度和安全性的独特锂离子/硫化学体系。我们表明,在超浓水性电解质中,硫的锂化过程通过固液两相反应途径经历从高阶多硫化物到低阶多硫化物的相变,其中硫化物电极中的液态多硫化物相在热力学上与超浓水性电解质相分离。具有固液两相的硫表现出1327 mAh/(g硫)的可逆容量,同时具有快速的反应动力学和可忽略不计的多硫化物溶解。通过将硫阳极与不同的锂离子阴极材料耦合,水性锂离子/硫全电池在约100%的库仑效率下,能够在超过1000次循环中提供高达200 Wh/(kg总电极质量)的创纪录高能量密度。这些性能已经接近使用非水电解质的商用锂离子电池(LIB),同时还具有后者所不具备的固有安全性。这种水性电池化学体系的优异性能显著提升了水性锂离子电池在大规模应用中的实际可能性。

相似文献

2
The Li-ion rechargeable battery: a perspective.锂离子可充电电池:一个展望。
J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.
4
Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.可充锌-水多硫化物电池与介质离子固体电解质。
ACS Appl Mater Interfaces. 2018 Apr 4;10(13):10612-10617. doi: 10.1021/acsami.8b00981. Epub 2018 Mar 23.
7
Challenges and prospects of lithium-sulfur batteries.锂硫电池的挑战与展望。
Acc Chem Res. 2013 May 21;46(5):1125-34. doi: 10.1021/ar300179v. Epub 2012 Oct 25.

引用本文的文献

3
Building a High-Potential Silver-Sulfur Redox Reaction Based on the Hard-Soft Acid-Base Theory.基于软硬酸碱理论构建高电位银-硫氧化还原反应
Energy Fuels. 2024 May 31;38(12):11233-11239. doi: 10.1021/acs.energyfuels.4c00817. eCollection 2024 Jun 20.
4
Healable and conductive sulfur iodide for solid-state Li-S batteries.可修复和导电的碘化硫用于固态 Li-S 电池。
Nature. 2024 Mar;627(8003):301-305. doi: 10.1038/s41586-024-07101-z. Epub 2024 Mar 6.
9
MXene chemistry, electrochemistry and energy storage applications.MXene 化学、电化学和储能应用。
Nat Rev Chem. 2022 Jun;6(6):389-404. doi: 10.1038/s41570-022-00384-8. Epub 2022 Apr 20.
10
Direct imaging of micrometer-thick interfaces in salt-salt aqueous biphasic systems.直接观测盐-盐双水相体系中微米级厚界面。
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2220662120. doi: 10.1073/pnas.2220662120. Epub 2023 Apr 17.

本文引用的文献

5
In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.原位拉曼光谱法研究锂硫电池中硫的形态。
ACS Appl Mater Interfaces. 2015 Jan 28;7(3):1709-19. doi: 10.1021/am5072942. Epub 2015 Jan 14.
8
Aqueous rechargeable Li and Na ion batteries.水系可充电锂和钠离子电池。
Chem Rev. 2014 Dec 10;114(23):11788-827. doi: 10.1021/cr500232y. Epub 2014 Sep 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验