Yang Chongyin, Suo Liumin, Borodin Oleg, Wang Fei, Sun Wei, Gao Tao, Fan Xiulin, Hou Singyuk, Ma Zhaohui, Amine Khalil, Xu Kang, Wang Chunsheng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20740.
Electrochemistry Branch, Sensor and Electron Devices Directorate, Power and Energy Division, US Army Research Laboratory, Adelphi, MD 20783.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6197-6202. doi: 10.1073/pnas.1703937114. Epub 2017 May 31.
Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.
利用在扩大水性电解质的电化学稳定性窗口方面的最新成果,在这项工作中,我们创造了一种兼具高能量密度和安全性的独特锂离子/硫化学体系。我们表明,在超浓水性电解质中,硫的锂化过程通过固液两相反应途径经历从高阶多硫化物到低阶多硫化物的相变,其中硫化物电极中的液态多硫化物相在热力学上与超浓水性电解质相分离。具有固液两相的硫表现出1327 mAh/(g硫)的可逆容量,同时具有快速的反应动力学和可忽略不计的多硫化物溶解。通过将硫阳极与不同的锂离子阴极材料耦合,水性锂离子/硫全电池在约100%的库仑效率下,能够在超过1000次循环中提供高达200 Wh/(kg总电极质量)的创纪录高能量密度。这些性能已经接近使用非水电解质的商用锂离子电池(LIB),同时还具有后者所不具备的固有安全性。这种水性电池化学体系的优异性能显著提升了水性锂离子电池在大规模应用中的实际可能性。