Suppr超能文献

基于动态面部运动的基于视频的伪装人脸识别的深度尖峰神经网络。

Deep Spiking Neural Network for Video-Based Disguise Face Recognition Based on Dynamic Facial Movements.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jun;31(6):1843-1855. doi: 10.1109/TNNLS.2019.2927274. Epub 2019 Jul 19.

Abstract

With the increasing popularity of social media and smart devices, the face as one of the key biometrics becomes vital for person identification. Among those face recognition algorithms, video-based face recognition methods could make use of both temporal and spatial information just as humans do to achieve better classification performance. However, they cannot identify individuals when certain key facial areas, such as eyes or nose, are disguised by heavy makeup or rubber/digital masks. To this end, we propose a novel deep spiking neural network architecture in this paper. It takes dynamic facial movements, the facial muscle changes induced by speaking or other activities, as the sole input. An event-driven continuous spike-timing-dependent plasticity learning rule with adaptive thresholding is applied to train the synaptic weights. The experiments on our proposed video-based disguise face database (MakeFace DB) demonstrate that the proposed learning method performs very well, i.e., it achieves from 95% to 100% correct classification rates under various realistic experimental scenarios.

摘要

随着社交媒体和智能设备的普及,人脸作为关键生物特征之一对于身份识别变得至关重要。在那些人脸识别算法中,基于视频的人脸识别方法可以像人类一样利用时间和空间信息,从而实现更好的分类性能。然而,当眼睛或鼻子等关键面部区域被厚重的妆容或橡胶/数字面具遮挡时,它们无法识别个人。为此,我们在本文中提出了一种新颖的深度尖峰神经网络架构。它仅将动态面部运动,即说话或其他活动引起的面部肌肉变化作为唯一输入。应用事件驱动的连续尖峰时间依赖可塑性学习规则和自适应阈值来训练突触权重。在我们提出的基于视频的伪装人脸数据库 (MakeFace DB) 上的实验表明,所提出的学习方法表现非常出色,即在各种现实实验场景下实现了从 95%到 100%的正确分类率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验