Suppr超能文献

机器学习方法将胎粪代谢物识别为新生儿高胆红素血症的潜在生物标志物。

Machine learning approach identifies meconium metabolites as potential biomarkers of neonatal hyperbilirubinemia.

作者信息

Zeng Shujuan, Wang Zhangxing, Zhang Peng, Yin Zhaoqing, Huang Xunbin, Tang Xisheng, Shi Lindong, Guo Kaiping, Liu Ting, Wang Mingbang, Qiu Huixian

机构信息

Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China.

Division of Neonatology, Shenzhen Longhua People's Hospital, Guangdong 518109, China.

出版信息

Comput Struct Biotechnol J. 2022 Apr 2;20:1778-1784. doi: 10.1016/j.csbj.2022.03.039. eCollection 2022.

Abstract

BACKGROUND

The gut microbiota plays an important role in the early stages of human life. Our previous study showed that the abundance of intestinal flora involved in galactose metabolism was altered and correlated with increased serum bilirubin levels in children with jaundice. We conducted the present study to systematically evaluate alterations in the meconium metabolome of neonates with jaundice and search for metabolic markers associated with neonatal jaundice.

METHODS

We included 68 neonates with neonatal hyperbilirubinemia, also known as neonatal jaundice (NJ) and 68 matched healthy controls (HC), collected meconium samples from them at birth, and performed metabolomic analysis via liquid chromatography-mass spectrometry.

RESULTS

Gut metabolites enabled clearly distinguishing the neonatal jaundice (NJ) and healthy control (HC) groups. We also identified the compositions of the gut metabolites that differed significantly between the NJ and HC groups; these differentially significant metabolites were enriched in aminyl tRNA biosynthesis; pantothenic acid and coenzyme biosynthesis; and the valine, leucine and isoleucine biosynthesis pathways. Gut branched-chain amino acid (BCAA) levels were positively correlated with serum bilirubin levels, and the area under the receiver operating characteristic curve of the random forest classifier model based on BCAAs, proline, methionine, phenylalanine and total bilirubin reached 96.9%, showing good potential for diagnostic applications. Machine learning-based causal inference analysis revealed the causal effect of BCAAs on serum total bilirubin and NJ.

CONCLUSIONS

Altered gut metabolites in neonates with jaundice showed that increased BCAAs and total serum bilirubin were positively correlated. BCAAs proline, methionine, phenylalanine are potential biomarkers of NJ.

摘要

背景

肠道微生物群在人类生命早期阶段发挥着重要作用。我们之前的研究表明,参与半乳糖代谢的肠道菌群丰度发生改变,且与黄疸患儿血清胆红素水平升高相关。我们开展本研究以系统评估黄疸新生儿胎粪代谢组的变化,并寻找与新生儿黄疸相关的代谢标志物。

方法

我们纳入了68例患有新生儿高胆红素血症(又称新生儿黄疸,NJ)的新生儿和68例匹配的健康对照(HC),在出生时采集他们的胎粪样本,并通过液相色谱 - 质谱联用技术进行代谢组学分析。

结果

肠道代谢物能够清晰区分新生儿黄疸(NJ)组和健康对照(HC)组。我们还确定了NJ组和HC组之间存在显著差异的肠道代谢物组成;这些差异显著的代谢物在氨酰基tRNA生物合成、泛酸和辅酶生物合成以及缬氨酸、亮氨酸和异亮氨酸生物合成途径中富集。肠道支链氨基酸(BCAA)水平与血清胆红素水平呈正相关,基于BCAAs、脯氨酸、蛋氨酸、苯丙氨酸和总胆红素的随机森林分类器模型的受试者操作特征曲线下面积达到96.9%,显示出良好的诊断应用潜力。基于机器学习的因果推断分析揭示了BCAAs对血清总胆红素和NJ的因果效应。

结论

黄疸新生儿肠道代谢物的改变表明,BCAAs增加与血清总胆红素升高呈正相关。BCAAs、脯氨酸、蛋氨酸、苯丙氨酸是NJ的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2560/9027383/4d989340417b/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验