Suppr超能文献

血清支链氨基酸时间序列特征用于慢性心力衰竭的早期诊断。

Time Series Characteristics of Serum Branched-Chain Amino Acids for Early Diagnosis of Chronic Heart Failure.

机构信息

Key Laboratory of Drug Quality Control and Pharmacovigilance , China Pharmaceutical University, Ministry of Education , Nanjing 210009 , China.

Key Laboratory of Myocardial Ischemia , Harbin Medical University, Ministry of Education , Harbin , China.

出版信息

J Proteome Res. 2019 May 3;18(5):2121-2128. doi: 10.1021/acs.jproteome.9b00002. Epub 2019 Mar 29.

Abstract

Chronic heart failure (CHF) is an ongoing clinical syndrome with cardiac dysfunction that can be traced to alterations in cardiac metabolism. The identification of metabolic biomarkers in easily accessible fluids to improve the early diagnosis of CHF has been elusive to date. In this study, we took multidimensional analytical techniques to discover potentially new diagnostic biomarkers by focusing on the dynamic changes of metabolites in serum during the progression of CHF. Using mass-spectrometry-based untargeted metabolomics, we identified 23 cardiac metabolites that were altered in a rat model of myocardial infarction induced CHF. Among these differential metabolites, branched-chain amino acids (BCAAs) in serum, especially leucine and valine, showed a high capability to differentiate between CHF and sham-operated rats, of which area under the receiver operating characteristic curve was greater than 0.75. Combining with targeted analysis of the amino acids and related proteins and genes, we confirmed that BCAA metabolic pathway was significantly inhibited in rat failing hearts. On the basis of the time series data of serum samples, we characterized the fluctuation pattern of circulating BCAAs by the disease progression model. Finally, the time-resolved diagnostic potential of serum BCAAs was evaluated by the machine-learning-based classifier, and high diagnostic accuracy of 93.75% was achieved within 3 weeks after surgery. These findings provide a promising metabolic signature that can be further exploited for CHF early diagnostic development.

摘要

慢性心力衰竭(CHF)是一种持续存在的临床综合征,伴有心脏功能障碍,可以追溯到心脏代谢的改变。迄今为止,尚未发现可在易获取的体液中识别代谢生物标志物以改善 CHF 的早期诊断。在这项研究中,我们采用多维分析技术,通过关注 CHF 进展过程中血清代谢物的动态变化,来发现潜在的新诊断生物标志物。我们使用基于质谱的非靶向代谢组学,在心肌梗死诱导的 CHF 大鼠模型中鉴定出 23 种心脏代谢物发生改变。在这些差异代谢物中,血清中的支链氨基酸(BCAAs),尤其是亮氨酸和缬氨酸,具有区分 CHF 大鼠和假手术大鼠的高能力,其接受者操作特征曲线下面积大于 0.75。结合对氨基酸和相关蛋白质及基因的靶向分析,我们证实了 BCAA 代谢途径在大鼠衰竭心脏中受到显著抑制。基于血清样本的时间序列数据,我们通过疾病进展模型来描述循环 BCAAs 的波动模式。最后,基于机器学习的分类器评估了血清 BCAAs 的时间分辨诊断潜力,在手术后 3 周内实现了 93.75%的高诊断准确性。这些发现提供了一个有前途的代谢特征,可以进一步用于 CHF 的早期诊断开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验