Qi Meili, Chao Dongliang, Sun Weifeng, Yin Jinghua, Chen Minghua
Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Materials Science and Engineering, Harbin University of Science and Technology Harbin 150080 P. R. China
School of Materials Science and Engineering, Nanyang Technological University 637553 Singapore.
RSC Adv. 2020 Feb 11;10(11):6342-6350. doi: 10.1039/c9ra10485b. eCollection 2020 Feb 7.
The control of structure and morphology in an electrode design for the development of large-power lithium ion batteries is crucial to create efficient transport pathways for ions and electrons. Herein, we report a powerful combinational strategy to build omnibearing conductive networks composed of titanium niobium oxide nanorods and carbon nanofibers (TNO/CNFs) an electrostatic spinning method and a hydrothermal method into free-standing arrays with a three-dimensional heterostructure core/shell structure. TNO/CNF electrode exhibits significantly superior electrochemical performance and high-rate capability (241 mA h g at 10C, and 208 mA h g at 20C). The capacity of the TNO/CNF electrode is 257 mA h g after 2000 cycles at 20C, which is much higher than that of the TNO electrode. In particular, the TNO/CNF electrode delivers a reversible capacity of 153.6 mA h g with a capacity retention of 95% after 5000 cycles at ultrahigh current density. Superior electrochemical performances of the TNO/CNF electrode are attributed to the unique composite structure.
在大功率锂离子电池开发的电极设计中,结构和形态的控制对于创建离子和电子的高效传输路径至关重要。在此,我们报告一种强大的组合策略,通过静电纺丝法和水热法构建由钛铌氧化物纳米棒和碳纳米纤维(TNO/CNF)组成的全方位导电网络,形成具有三维异质结构核/壳结构的独立阵列。TNO/CNF电极表现出显著优异的电化学性能和高倍率性能(在10C时为241 mA h g,在20C时为208 mA h g)。TNO/CNF电极在20C下循环2000次后的容量为257 mA h g,远高于TNO电极。特别是,TNO/CNF电极在超高电流密度下循环5000次后,可逆容量为153.6 mA h g,容量保持率为95%。TNO/CNF电极优异的电化学性能归因于其独特的复合结构。